877 research outputs found

    Motion Planning for Autonomous Vehicles in Partially Observable Environments

    Get PDF
    Unsicherheiten, welche aus Sensorrauschen oder nicht beobachtbaren Manöverintentionen anderer Verkehrsteilnehmer resultieren, akkumulieren sich in der Datenverarbeitungskette eines autonomen Fahrzeugs und führen zu einer unvollständigen oder fehlinterpretierten Umfeldrepräsentation. Dadurch weisen Bewegungsplaner in vielen Fällen ein konservatives Verhalten auf. Diese Dissertation entwickelt zwei Bewegungsplaner, welche die Defizite der vorgelagerten Verarbeitungsmodule durch Ausnutzung der Reaktionsfähigkeit des Fahrzeugs kompensieren. Diese Arbeit präsentiert zuerst eine ausgiebige Analyse über die Ursachen und Klassifikation der Unsicherheiten und zeigt die Eigenschaften eines idealen Bewegungsplaners auf. Anschließend befasst sie sich mit der mathematischen Modellierung der Fahrziele sowie den Randbedingungen, welche die Sicherheit gewährleisten. Das resultierende Planungsproblem wird mit zwei unterschiedlichen Methoden in Echtzeit gelöst: Zuerst mit nichtlinearer Optimierung und danach, indem es als teilweise beobachtbarer Markov-Entscheidungsprozess (POMDP) formuliert und die Lösung mit Stichproben angenähert wird. Der auf nichtlinearer Optimierung basierende Planer betrachtet mehrere Manöveroptionen mit individuellen Auftrittswahrscheinlichkeiten und berechnet daraus ein Bewegungsprofil. Er garantiert Sicherheit, indem er die Realisierbarkeit einer zufallsbeschränkten Rückfalloption gewährleistet. Der Beitrag zum POMDP-Framework konzentriert sich auf die Verbesserung der Stichprobeneffizienz in der Monte-Carlo-Planung. Erstens werden Informationsbelohnungen definiert, welche die Stichproben zu Aktionen führen, die eine höhere Belohnung ergeben. Dabei wird die Auswahl der Stichproben für das reward-shaped Problem durch die Verwendung einer allgemeinen Heuristik verbessert. Zweitens wird die Kontinuität in der Reward-Struktur für die Aktionsauswahl ausgenutzt und dadurch signifikante Leistungsverbesserungen erzielt. Evaluierungen zeigen, dass mit diesen Planern große Erfolge in Fahrversuchen und Simulationsstudien mit komplexen Interaktionsmodellen erreicht werden

    ESMD Space Grant Faculty Project

    Get PDF
    No abstract availabl

    Vision based localization of mobile robots

    Get PDF
    Mobile robotics is an active and exciting sub-field of Computer Science. Its importance is easily witnessed in a variety of undertakings from DARPA\u27s Grand Challenge to NASA\u27s Mars exploration program. The field is relatively young, and still many challenges face roboticists across the board. One important area of research is localization, which concerns itself with granting a robot the ability to discover and continually update an internal representation of its position. Vision based sensor systems have been investigated [8,22,27], but to much lesser extent than other popular techniques [4,6,7,9,10]. A custom mobile platform has been constructed on top of which a monocular vision based localization system has been implemented. The rigorous gathering of empirical data across a large group of parameters germane to the problem has led to various findings about monocular vision based localization and the fitness of the custom robot platform. The localization component is based on a probabilistic technique called Monte-Carlo Localization (MCL) that tolerates a variety of different sensors and effectors, and has further proven to be adept at localization in diverse circumstances. Both a motion model and sensor model that drive the particle filter at the algorithm\u27s core have been carefully derived. The sensor model employs a simple correlation process that leverages color histograms and edge detection to filter robot pose estimations via the on board vision. This algorithm relies on image matching to tune position estimates based on a priori knowledge of its environment in the form of a feature library. It is believed that leveraging different computationally inexpensive features can lead to efficient and robust localization with MCL. The central goal of this thesis is to implement and arrive at such a conclusion through the gathering of empirical data. Section 1 presents a brief introduction to mobile robot localization and robot architectures, while section 2 covers MCL itself in more depth. Section 3 elaborates on the localization strategy, modeling and implementation that forms the basis of the trials that are presented toward the end of that section. Section 4 presents a revised implementation that attempts to address shortcomings identified during localization trials. Finally in section 5, conclusions are drawn about the effectiveness of the localization implementation and a path to improved localization with monocular vision is posited

    Policy-Based Planning for Robust Robot Navigation

    Full text link
    This thesis proposes techniques for constructing and implementing an extensible navigation framework suitable for operating alongside or in place of traditional navigation systems. Robot navigation is only possible when many subsystems work in tandem such as localization and mapping, motion planning, control, and object tracking. Errors in any one of these subsystems can result in the robot failing to accomplish its task, oftentimes requiring human interventions that diminish the benefits theoretically provided by autonomous robotic systems. Our first contribution is Direction Approximation through Random Trials (DART), a method for generating human-followable navigation instructions optimized for followability instead of traditional metrics such as path length. We show how this strategy can be extended to robot navigation planning, allowing the robot to compute the sequence of control policies and switching conditions maximizing the likelihood with which the robot will reach its goal. This technique allows robots to select plans based on reliability in addition to efficiency, avoiding error-prone actions or areas of the environment. We also show how DART can be used to build compact, topological maps of its environments, offering opportunities to scale to larger environments. DART depends on the existence of a set of behaviors and switching conditions describing ways the robot can move through an environment. In the remainder of this thesis, we present methods for learning these behaviors and conditions in indoor environments. To support landmark-based navigation, we show how to train a Convolutional Neural Network (CNN) to distinguish between semantically labeled 2D occupancy grids generated from LIDAR data. By providing the robot the ability to recognize specific classes of places based on human labels, not only do we support transitioning between control laws, but also provide hooks for human-aided instruction and direction. Additionally, we suggest a subset of behaviors that provide DART with a sufficient set of actions to navigate in most indoor environments and introduce a method to learn these behaviors from teleloperated demonstrations. Our method learns a cost function suitable for integration into gradient-based control schemes. This enables the robot to execute behaviors in the absence of global knowledge. We present results demonstrating these behaviors working in several environments with varied structure, indicating that they generalize well to new environments. This work was motivated by the weaknesses and brittleness of many state-of-the-art navigation systems. Reliable navigation is the foundation of any mobile robotic system. It provides access to larger work spaces and enables a wide variety of tasks. Even though navigation systems have continued to improve, catastrophic failures can still occur (e.g. due to an incorrect loop closure) that limit their reliability. Furthermore, as work areas approach the scale of kilometers, constructing and operating on precise localization maps becomes expensive. These limitations prevent large scale deployments of robots outside of controlled settings and laboratory environments. The work presented in this thesis is intended to augment or replace traditional navigation systems to mitigate concerns about scalability and reliability by considering the effects of navigation failures for particular actions. By considering these effects when evaluating the actions to take, our framework can adapt navigation strategies to best take advantage of the capabilities of the robot in a given environment. A natural output of our framework is a topological network of actions and switching conditions, providing compact representations of work areas suitable for fast, scalable planning.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144073/1/rgoeddel_1.pd

    Active Object Classification from 3D Range Data with Mobile Robots

    Get PDF
    This thesis addresses the problem of how to improve the acquisition of 3D range data with a mobile robot for the task of object classification. Establishing the identities of objects in unknown environments is fundamental for robotic systems and helps enable many abilities such as grasping, manipulation, or semantic mapping. Objects are recognised by data obtained from sensor observations, however, data is highly dependent on viewpoint; the variation in position and orientation of the sensor relative to an object can result in large variation in the perception quality. Additionally, cluttered environments present a further challenge because key data may be missing. These issues are not always solved by traditional passive systems where data are collected from a fixed navigation process then fed into a perception pipeline. This thesis considers an active approach to data collection by deciding where is most appropriate to make observations for the perception task. The core contributions of this thesis are a non-myopic planning strategy to collect data efficiently under resource constraints, and supporting viewpoint prediction and evaluation methods for object classification. Our approach to planning uses Monte Carlo methods coupled with a classifier based on non-parametric Bayesian regression. We present a novel anytime and non-myopic planning algorithm, Monte Carlo active perception, that extends Monte Carlo tree search to partially observable environments and the active perception problem. This is combined with a particle-based estimation process and a learned observation likelihood model that uses Gaussian process regression. To support planning, we present 3D point cloud prediction algorithms and utility functions that measure the quality of viewpoints by their discriminatory ability and effectiveness under occlusion. The utility of viewpoints is quantified by information-theoretic metrics, such as mutual information, and an alternative utility function that exploits learned data is developed for special cases. The algorithms in this thesis are demonstrated in a variety of scenarios. We extensively test our online planning and classification methods in simulation as well as with indoor and outdoor datasets. Furthermore, we perform hardware experiments with different mobile platforms equipped with different types of sensors. Most significantly, our hardware experiments with an outdoor robot are to our knowledge the first demonstrations of online active perception in a real outdoor environment. Active perception has broad significance in many applications. This thesis emphasises the advantages of an active approach to object classification and presents its assimilation with a wide range of robotic systems, sensors, and perception algorithms. By demonstration of performance enhancements and diversity, our hope is that the concept of considering perception and planning in an integrated manner will be of benefit in improving current systems that rely on passive data collection

    Reliable Navigation for SUAS in Complex Indoor Environments

    Get PDF
    Indoor environments are a particular challenge for Unmanned Aerial Vehicles (UAVs). Effective navigation through these GPS-denied environments require alternative localization systems, as well as methods of sensing and avoiding obstacles while remaining on-task. Additionally, the relatively small clearances and human presence characteristic of indoor spaces necessitates a higher level of precision and adaptability than is common in traditional UAV flight planning and execution. This research blends the optimization of individual technologies, such as state estimation and environmental sensing, with system integration and high-level operational planning. The combination of AprilTag visual markers, multi-camera Visual Odometry, and IMU data can be used to create a robust state estimator that describes position, velocity, and rotation of a multicopter within an indoor environment. However these data sources have unique, nonlinear characteristics that should be understood to effectively plan for their usage in an automated environment. The research described herein begins by analyzing the unique characteristics of these data streams in order to create a highly-accurate, fault-tolerant state estimator. Upon this foundation, the system built, tested, and described herein uses Visual Markers as navigation anchors, visual odometry for motion estimation and control, and then uses depth sensors to maintain an up-to-date map of the UAV\u27s immediate surroundings. It develops and continually refines navigable routes through a novel combination of pre-defined and sensory environmental data. Emphasis is put on the real-world development and testing of the system, through discussion of computational resource management and risk reduction

    Novel Computational Methods for State Space Filtering

    Get PDF
    The state-space formulation for time-dependent models has been long used invarious applications in science and engineering. While the classical Kalman filter(KF) provides optimal posterior estimation under linear Gaussian models, filteringin nonlinear and non-Gaussian environments remains challenging.Based on the Monte Carlo approximation, the classical particle filter (PF) can providemore precise estimation under nonlinear non-Gaussian models. However, it suffers fromparticle degeneracy. Drawing from optimal transport theory, the stochastic map filter(SMF) accommodates a solution to this problem, but its performance is influenced bythe limited flexibility of nonlinear map parameterisation. To account for these issues,a hybrid particle-stochastic map filter (PSMF) is first proposed in this thesis, wherethe two parts of the split likelihood are assimilated by the PF and SMF, respectively.Systematic resampling and smoothing are employed to alleviate the particle degeneracycaused by the PF. Furthermore, two PSMF variants based on the linear and nonlinearmaps (PSMF-L and PSMF-NL) are proposed, and their filtering performance is comparedwith various benchmark filters under different nonlinear non-Gaussian models.Although achieving accurate filtering results, the particle-based filters require expensive computations because of the large number of samples involved. Instead, robustKalman filters (RKFs) provide efficient solutions for the linear models with heavy-tailednoise, by adopting the recursive estimation framework of the KF. To exploit the stochasticcharacteristics of the noise, the use of heavy-tailed distributions which can fit variouspractical noises constitutes a viable solution. Hence, this thesis also introduces a novelRKF framework, RKF-SGαS, where the signal noise is assumed to be Gaussian and theheavy-tailed measurement noise is modelled by the sub-Gaussian α-stable (SGαS) distribution. The corresponding joint posterior distribution of the state vector and auxiliaryrandom variables is estimated by the variational Bayesian (VB) approach. Four differentminimum mean square error (MMSE) estimators of the scale function are presented.Besides, the RKF-SGαS is compared with the state-of-the-art RKFs under three kinds ofheavy-tailed measurement noises, and the simulation results demonstrate its estimationaccuracy and efficiency.One notable limitation of the proposed RKF-SGαS is its reliance on precise modelparameters, and substantial model errors can potentially impede its filtering performance. Therefore, this thesis also introduces a data-driven RKF method, referred to asRKFnet, which combines the conventional RKF framework with a deep learning technique. An unsupervised scheduled sampling technique (USS) is proposed to improve theistability of the training process. Furthermore, the advantages of the proposed RKFnetare quantified with respect to various traditional RKFs

    Maintenance Management of Wind Turbines

    Get PDF
    “Maintenance Management of Wind Turbines” considers the main concepts and the state-of-the-art, as well as advances and case studies on this topic. Maintenance is a critical variable in industry in order to reach competitiveness. It is the most important variable, together with operations, in the wind energy industry. Therefore, the correct management of corrective, predictive and preventive politics in any wind turbine is required. The content also considers original research works that focus on content that is complementary to other sub-disciplines, such as economics, finance, marketing, decision and risk analysis, engineering, etc., in the maintenance management of wind turbines. This book focuses on real case studies. These case studies concern topics such as failure detection and diagnosis, fault trees and subdisciplines (e.g., FMECA, FMEA, etc.) Most of them link these topics with financial, schedule, resources, downtimes, etc., in order to increase productivity, profitability, maintainability, reliability, safety, availability, and reduce costs and downtime, etc., in a wind turbine. Advances in mathematics, models, computational techniques, dynamic analysis, etc., are employed in analytics in maintenance management in this book. Finally, the book considers computational techniques, dynamic analysis, probabilistic methods, and mathematical optimization techniques that are expertly blended to support the analysis of multi-criteria decision-making problems with defined constraints and requirements
    corecore