17,455 research outputs found

    Error-Sensitive Proof-Labeling Schemes

    Get PDF
    Proof-labeling schemes are known mechanisms providing nodes of networks with certificates that can be verified locally by distributed algorithms. Given a boolean predicate on network states, such schemes enable to check whether the predicate is satisfied by the actual state of the network, by having nodes interacting with their neighbors only. Proof-labeling schemes are typically designed for enforcing fault-tolerance, by making sure that if the current state of the network is illegal with respect to some given predicate, then at least one node will detect it. Such a node can raise an alarm, or launch a recovery procedure enabling the system to return to a legal state. In this paper, we introduce error-sensitive proof-labeling schemes. These are proof-labeling schemes which guarantee that the number of nodes detecting illegal states is linearly proportional to the edit-distance between the current state and the set of legal states. By using error-sensitive proof-labeling schemes, states which are far from satisfying the predicate will be detected by many nodes, enabling fast return to legality. We provide a structural characterization of the set of boolean predicates on network states for which there exist error-sensitive proof-labeling schemes. This characterization allows us to show that classical predicates such as, e.g., acyclicity, and leader admit error-sensitive proof-labeling schemes, while others like regular subgraphs don\u27t. We also focus on compact error-sensitive proof-labeling schemes. In particular, we show that the known proof-labeling schemes for spanning tree and minimum spanning tree, using certificates on O(log n) bits, and on O(log^2 n) bits, respectively, are error-sensitive, as long as the trees are locally represented by adjacency lists, and not just by parent pointers

    Survey of Distributed Decision

    Get PDF
    We survey the recent distributed computing literature on checking whether a given distributed system configuration satisfies a given boolean predicate, i.e., whether the configuration is legal or illegal w.r.t. that predicate. We consider classical distributed computing environments, including mostly synchronous fault-free network computing (LOCAL and CONGEST models), but also asynchronous crash-prone shared-memory computing (WAIT-FREE model), and mobile computing (FSYNC model)

    Hardness of Exact Distance Queries in Sparse Graphs Through Hub Labeling

    Full text link
    A distance labeling scheme is an assignment of bit-labels to the vertices of an undirected, unweighted graph such that the distance between any pair of vertices can be decoded solely from their labels. An important class of distance labeling schemes is that of hub labelings, where a node v∈Gv \in G stores its distance to the so-called hubs Sv⊆VS_v \subseteq V, chosen so that for any u,v∈Vu,v \in V there is w∈Su∩Svw \in S_u \cap S_v belonging to some shortest uvuv path. Notice that for most existing graph classes, the best distance labelling constructions existing use at some point a hub labeling scheme at least as a key building block. Our interest lies in hub labelings of sparse graphs, i.e., those with ∣E(G)∣=O(n)|E(G)| = O(n), for which we show a lowerbound of n2O(log⁥n)\frac{n}{2^{O(\sqrt{\log n})}} for the average size of the hubsets. Additionally, we show a hub-labeling construction for sparse graphs of average size O(nRS(n)c)O(\frac{n}{RS(n)^{c}}) for some 0<c<10 < c < 1, where RS(n)RS(n) is the so-called Ruzsa-Szemer{\'e}di function, linked to structure of induced matchings in dense graphs. This implies that further improving the lower bound on hub labeling size to n2(log⁥n)o(1)\frac{n}{2^{(\log n)^{o(1)}}} would require a breakthrough in the study of lower bounds on RS(n)RS(n), which have resisted substantial improvement in the last 70 years. For general distance labeling of sparse graphs, we show a lowerbound of 12O(log⁥n)SumIndex(n)\frac{1}{2^{O(\sqrt{\log n})}} SumIndex(n), where SumIndex(n)SumIndex(n) is the communication complexity of the Sum-Index problem over ZnZ_n. Our results suggest that the best achievable hub-label size and distance-label size in sparse graphs may be Θ(n2(log⁥n)c)\Theta(\frac{n}{2^{(\log n)^c}}) for some 0<c<10<c < 1

    Polynomial-Time Space-Optimal Silent Self-Stabilizing Minimum-Degree Spanning Tree Construction

    Full text link
    Motivated by applications to sensor networks, as well as to many other areas, this paper studies the construction of minimum-degree spanning trees. We consider the classical node-register state model, with a weakly fair scheduler, and we present a space-optimal \emph{silent} self-stabilizing construction of minimum-degree spanning trees in this model. Computing a spanning tree with minimum degree is NP-hard. Therefore, we actually focus on constructing a spanning tree whose degree is within one from the optimal. Our algorithm uses registers on O(log⁥n)O(\log n) bits, converges in a polynomial number of rounds, and performs polynomial-time computation at each node. Specifically, the algorithm constructs and stabilizes on a special class of spanning trees, with degree at most OPT+1OPT+1. Indeed, we prove that, unless NP == coNP, there are no proof-labeling schemes involving polynomial-time computation at each node for the whole family of spanning trees with degree at most OPT+1OPT+1. Up to our knowledge, this is the first example of the design of a compact silent self-stabilizing algorithm constructing, and stabilizing on a subset of optimal solutions to a natural problem for which there are no time-efficient proof-labeling schemes. On our way to design our algorithm, we establish a set of independent results that may have interest on their own. In particular, we describe a new space-optimal silent self-stabilizing spanning tree construction, stabilizing on \emph{any} spanning tree, in O(n)O(n) rounds, and using just \emph{one} additional bit compared to the size of the labels used to certify trees. We also design a silent loop-free self-stabilizing algorithm for transforming a tree into another tree. Last but not least, we provide a silent self-stabilizing algorithm for computing and certifying the labels of a NCA-labeling scheme

    Algebraic Approach to Physical-Layer Network Coding

    Full text link
    The problem of designing physical-layer network coding (PNC) schemes via nested lattices is considered. Building on the compute-and-forward (C&F) relaying strategy of Nazer and Gastpar, who demonstrated its asymptotic gain using information-theoretic tools, an algebraic approach is taken to show its potential in practical, non-asymptotic, settings. A general framework is developed for studying nested-lattice-based PNC schemes---called lattice network coding (LNC) schemes for short---by making a direct connection between C&F and module theory. In particular, a generic LNC scheme is presented that makes no assumptions on the underlying nested lattice code. C&F is re-interpreted in this framework, and several generalized constructions of LNC schemes are given. The generic LNC scheme naturally leads to a linear network coding channel over modules, based on which non-coherent network coding can be achieved. Next, performance/complexity tradeoffs of LNC schemes are studied, with a particular focus on hypercube-shaped LNC schemes. The error probability of this class of LNC schemes is largely determined by the minimum inter-coset distances of the underlying nested lattice code. Several illustrative hypercube-shaped LNC schemes are designed based on Construction A and D, showing that nominal coding gains of 3 to 7.5 dB can be obtained with reasonable decoding complexity. Finally, the possibility of decoding multiple linear combinations is considered and related to the shortest independent vectors problem. A notion of dominant solutions is developed together with a suitable lattice-reduction-based algorithm.Comment: Submitted to IEEE Transactions on Information Theory, July 21, 2011. Revised version submitted Sept. 17, 2012. Final version submitted July 3, 201

    Batch and median neural gas

    Full text link
    Neural Gas (NG) constitutes a very robust clustering algorithm given euclidian data which does not suffer from the problem of local minima like simple vector quantization, or topological restrictions like the self-organizing map. Based on the cost function of NG, we introduce a batch variant of NG which shows much faster convergence and which can be interpreted as an optimization of the cost function by the Newton method. This formulation has the additional benefit that, based on the notion of the generalized median in analogy to Median SOM, a variant for non-vectorial proximity data can be introduced. We prove convergence of batch and median versions of NG, SOM, and k-means in a unified formulation, and we investigate the behavior of the algorithms in several experiments.Comment: In Special Issue after WSOM 05 Conference, 5-8 september, 2005, Pari
    • 

    corecore