4,181 research outputs found

    Oversampling PCM techniques and optimum noise shapers for quantizing a class of nonbandlimited signals

    Get PDF
    We consider the efficient quantization of a class of nonbandlimited signals, namely, the class of discrete-time signals that can be recovered from their decimated version. The signals are modeled as the output of a single FIR interpolation filter (single band model) or, more generally, as the sum of the outputs of L FIR interpolation filters (multiband model). These nonbandlimited signals are oversampled, and it is therefore reasonable to expect that we can reap the same benefits of well-known efficient A/D techniques that apply only to bandlimited signals. We first show that we can obtain a great reduction in the quantization noise variance due to the oversampled nature of the signals. We can achieve a substantial decrease in bit rate by appropriately decimating the signals and then quantizing them. To further increase the effective quantizer resolution, noise shaping is introduced by optimizing prefilters and postfilters around the quantizer. We start with a scalar time-invariant quantizer and study two important cases of linear time invariant (LTI) filters, namely, the case where the postfilter is the inverse of the prefilter and the more general case where the postfilter is independent from the prefilter. Closed form expressions for the optimum filters and average minimum mean square error are derived in each case for both the single band and multiband models. The class of noise shaping filters and quantizers is then enlarged to include linear periodically time varying (LPTV)M filters and periodically time-varying quantizers of period M. We study two special cases in great detail

    Design of FIR digital filters for pulse shaping and channel equalization using time-domain optimization

    Get PDF
    Three algorithms are developed for designing finite impulse response digital filters to be used for pulse shaping and channel equalization. The first is the Minimax algorithm which uses linear programming to design a frequency-sampling filter with a pulse shape that approximates the specification in a minimax sense. Design examples are included which accurately approximate a specified impulse response with a maximum error of 0.03 using only six resonators. The second algorithm is an extension of the Minimax algorithm to design preset equalizers for channels with known impulse responses. Both transversal and frequency-sampling equalizer structures are designed to produce a minimax approximation of a specified channel output waveform. Examples of these designs are compared as to the accuracy of the approximation, the resultant intersymbol interference (ISI), and the required transmitted energy. While the transversal designs are slightly more accurate, the frequency-sampling designs using six resonators have smaller ISI and energy values

    Contribution to Efficient Use of Narrowband Radio Channel

    Get PDF
    Předkládaná práce se soustředí na problematiku využívání úzkopásmového rádiového kanálu rádiovými modemy, které jsou určené pro průmyslové aplikace pozemní pohyblivé rádiové služby, specifikované v dominantní míře Evropským standardem ETSI EN 300 113. Tato rádiová zařízení se používají v kmitočtových pásmech od 30 MHz do 1 GHz s nejčastěji přidělovanou šířkou pásma 25 kHz a ve většině svých instalací jsou využívána ve fixních nebo mobilních bezdrátových sítích. Mezi typické oblasti použití patří zejména datová telemetrie, aplikace typu SCADA, nebo monitorování transportu strategických surovin. Za hlavní znaky popisovaného systému lze označit komunikační pokrytí značných vzdáleností, dané především vysokou výkonovou účinnosti datového přenosu a využívaní efektivních přístupových technik na rádiový kanál se semiduplexním komunikačním režimem. Striktní požadavky na elektromagnetickou kompatibilitu umožňují těmto zařízením využívat spektrum i v oblastech kmitočtově blízkým jiným komunikačním systémům bez nutnosti vkládání dodatečných ochranných frekvenčních pásem. Úzkopásmové rádiové komunikační systémy, v současnosti používají převážně exponenciální digitální modulace s konstantní modulační obálkou zejména z důvodů velice striktních omezení pro velikost výkonu vyzářeného do sousedního kanálu. Dosahují tak pouze kompromisních hodnot komunikační účinnosti. Úpravy limitů příslušných rádiových parametrů a rychlý rozvoj prostředků číslicového zpracování signálu v nedávné době, dnes umožňují ekonomicky přijatelné využití spektrálně efektivnějších modulačních technik i v těch oblastech, kde je prioritní využívání úzkých rádiových kanálů. Cílem předkládané disertační práce je proto výzkum postupů směřující ke sjednocení výhodných vlastností lineárních a nelineárních modulací v moderní konstrukci úzkopásmového rádiového modemu. Účelem tohoto výzkumu je efektivní a „ekologické“ využívání přidělené části frekvenčního spektra. Mezi hlavní dílčí problémy, jimiž se předkládaná práce zabývá, lze zařadit zejména tyto: Nyquistova modulační filtrace, navrhovaná s ohledem na minimalizaci nežádoucích elektromagnetických interferencí, efektivní číslicové algoritmy frekvenční demodulace a rychlé rámcové a symbolové synchronizace. Součástí práce je dále analýza navrhovaného řešení z pohledu celkové konstrukce programově definovaného rádiového modemu v rovině simulací při vyšetřování robustnosti datového přenosu rádiovým kanálem s bílým Gaussovským šumem nebo kanálem s únikem v důsledku mnohacestného šíření signálu. Závěr práce je pak zaměřen na prezentování výsledků praktické části projektu, v níž byly testovány, měřeny a analyzovány dvě prototypové konstrukce rádiového zařízení. Tato finální část práce obsahuje i praktická doporučení, vedoucí k vyššímu stupni využitelnosti spektrálně efektivnějších komunikačních režimů v oblasti budoucí generace úzkopásmových zařízení pozemní pohyblivé rádiové služby.he industrial narrowband land mobile radio (LMR) devices, as considered in this dissertation project, has been subject to European standard ETSI EN 300 113. The system operates on frequencies between 30 MHz and 1 GHz, with channel separations of up to 25 kHz, and is intended for private, fixed, or mobile, radio packet switching networks. Data telemetry, SCADA, maritime and police radio services; traffic monitoring; gas, water, and electricity producing factories are the typical system applications. Long distance coverage, high power efficiency, and efficient channel access techniques in half duplex operation are the primary advantages the system relays on. Very low level of adjacent channel power emissions and robust radio receiver architectures, with high dynamic range, enable for a system’s coexistence with various communication standards, without the additional guard band frequency intervals. On the other hand, the strict limitations of the referenced standard as well as the state of the technology, has hindered the increase in communication efficiency, with which the system has used its occupied bandwidth. New modifications and improvements are needed to the standard itself and to the up-to-date architectures of narrowband LMR devices, to make the utilization of more efficient modes of system operation practically realizable. The main objective of this dissertation thesis is therefore to find a practical way how to combine the favorable properties of the advanced nonlinear and linear digital modulation techniques in a single digital modem solution, in order to increase the efficiency of the narrowband radio channel usage allocated to the new generation of the industrial LMR devices. The main attention is given to the particular areas of digital modem design such as proposal of the new family of the Nyquist filters minimizing the adjacent channel interference, design and analysis of the efficient algorithms for frequency discrimination, fast frame and symbol

    Approximation of L\"owdin Orthogonalization to a Spectrally Efficient Orthogonal Overlapping PPM Design for UWB Impulse Radio

    Full text link
    In this paper we consider the design of spectrally efficient time-limited pulses for ultrawideband (UWB) systems using an overlapping pulse position modulation scheme. For this we investigate an orthogonalization method, which was developed in 1950 by Per-Olov L\"owdin. Our objective is to obtain a set of N orthogonal (L\"owdin) pulses, which remain time-limited and spectrally efficient for UWB systems, from a set of N equidistant translates of a time-limited optimal spectral designed UWB pulse. We derive an approximate L\"owdin orthogonalization (ALO) by using circulant approximations for the Gram matrix to obtain a practical filter implementation. We show that the centered ALO and L\"owdin pulses converge pointwise to the same Nyquist pulse as N tends to infinity. The set of translates of the Nyquist pulse forms an orthonormal basis or the shift-invariant space generated by the initial spectral optimal pulse. The ALO transform provides a closed-form approximation of the L\"owdin transform, which can be implemented in an analog fashion without the need of analog to digital conversions. Furthermore, we investigate the interplay between the optimization and the orthogonalization procedure by using methods from the theory of shift-invariant spaces. Finally we develop a connection between our results and wavelet and frame theory.Comment: 33 pages, 11 figures. Accepted for publication 9 Sep 201

    Lecture notes on the design of low-pass digital filters with wireless-communication applications

    Full text link
    The low-pass filter is a fundamental building block from which digital signal-processing systems (e.g. radio and radar) are built. Signals in the electromagnetic spectrum extend over all timescales/frequencies and are used to transmit and receive very long or very short pulses of very narrow or very wide bandwidth. Time/Frequency agility is the key for optimal spectrum utilization (i.e. to suppress interference and enhance propagation) and low-pass filtering is the low-level digital mechanism for manoeuvre in this domain. By increasing and decreasing the bandwidth of a low-pass filter, thus decreasing and increasing its pulse duration, the engineer may shift energy concentration between frequency and time. Simple processes for engineering such components are described and explained below. These lecture notes are part of a short course that is intended to help recent engineering graduates design low-pass digital filters for this purpose, who have had some exposure to the topic during their studies, and who are now interested in the sending and receiving signals over the electromagnetic spectrum, in wireless communication (i.e. radio) and remote sensing (e.g. radar) applications, for instance. The best way to understand the material is to interact with the spectrum using receivers and or transmitters and software-defined radio development-kits provide a convenient platform for experimentation. Fortunately, wireless communication in the radio-frequency spectrum is an ideal application for the illustration of waveform agility in the electromagnetic spectrum. In Parts I and II, the theoretical foundations of digital low-pass filters are presented, i.e. signals-and-systems theory, then in Part III they are applied to the problem of radio communication and used to concentrate energy in time or frequency.Comment: Added Slepian ref. Added arXiv ID to heade

    A Multi-CAP Visible-Light Communications System With 4.85-b/s/Hz Spectral Efficiency

    Get PDF
    In this paper, we experimentally demonstrate a multiband carrierless amplitude and phase modulation format for the first time in VLC. We split a conventional carrierless amplitude and phase modulated signal into m subcarriers in order to protect from the attenuation experienced at high frequencies in low-pass VLC systems. We investigate the relationship between throughput/spectral efficiency and m, where m = {10, 8, 6, 4, 2, 1} subcarriers over a fixed total signal bandwidth of 6.5 MHz. We show that transmission speeds (spectral efficiencies) of 31.53 (4.85), 30.88 (4.75), 25.40 (3.90), 23.65 (3.60), 15.78 (2.40), and 9.04 (1.40) Mb/s (b/s/Hz) can be achieved for the listed values of m, respectively

    Eigenfilters: A new approach to least-squares FIR filter design and applications including Nyquist filters

    Get PDF
    A new method of designing linear-phase FIR filters is proposed by minimizing a quadratic measure of the error in the passband and stopband. The method is based on the computation of an eigenvector of an appropriate real, symmetric, and positive-definite matrix. The proposed design procedure is general enough to incorporate both time- and frequency-domain constraints. For example, Nyquist filters can be easily designed using this approach. The design time for the new method is comparable to that of Remez exchange techniques. The passband and stopband errors in the frequency domain can be made equiripple by an iterative process, which involves feeding back the approximation error at each iteration. Several numerical design examples and comparisons to existing methods are presented, which demonstrate the usefulness of the present approach

    Programmable Logic Devices in Experimental Quantum Optics

    Get PDF
    We discuss the unique capabilities of programmable logic devices (PLD's) for experimental quantum optics and describe basic procedures of design and implementation. Examples of advanced applications include optical metrology and feedback control of quantum dynamical systems. As a tutorial illustration of the PLD implementation process, a field programmable gate array (FPGA) controller is used to stabilize the output of a Fabry-Perot cavity
    corecore