98 research outputs found

    Finite worldlength effects in fixed-point implementations of linear systems

    Get PDF
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 173-194).by Vinay Mohta.M.Eng

    NATURAL ALGORITHMS IN DIGITAL FILTER DESIGN

    Get PDF
    Digital filters are an important part of Digital Signal Processing (DSP), which plays vital roles within the modern world, but their design is a complex task requiring a great deal of specialised knowledge. An analysis of this design process is presented, which identifies opportunities for the application of optimisation. The Genetic Algorithm (GA) and Simulated Annealing are problem-independent and increasingly popular optimisation techniques. They do not require detailed prior knowledge of the nature of a problem, and are unaffected by a discontinuous search space, unlike traditional methods such as calculus and hill-climbing. Potential applications of these techniques to the filter design process are discussed, and presented with practical results. Investigations into the design of Frequency Sampling (FS) Finite Impulse Response (FIR) filters using a hybrid GA/hill-climber proved especially successful, improving on published results. An analysis of the search space for FS filters provided useful information on the performance of the optimisation technique. The ability of the GA to trade off a filter's performance with respect to several design criteria simultaneously, without intervention by the designer, is also investigated. Methods of simplifying the design process by using this technique are presented, together with an analysis of the difficulty of the non-linear FIR filter design problem from a GA perspective. This gave an insight into the fundamental nature of the optimisation problem, and also suggested future improvements. The results gained from these investigations allowed the framework for a potential 'intelligent' filter design system to be proposed, in which embedded expert knowledge, Artificial Intelligence techniques and traditional design methods work together. This could deliver a single tool capable of designing a wide range of filters with minimal human intervention, and of proposing solutions to incomplete problems. It could also provide the basis for the development of tools for other areas of DSP system design

    Limit cycles in digital filters : a bibliography, 1975-1984

    Get PDF

    Approximate Inference for Wireless Communications

    Get PDF

    Proceedings of the Workshop on Computational Aspects in the Control of Flexible Systems, part 2

    Get PDF
    The Control/Structures Integration Program, a survey of available software for control of flexible structures, computational efficiency and capability, modeling and parameter estimation, and control synthesis and optimization software are discussed

    On issues of equalization with the decorrelation algorithm : fast converging structures and finite-precision

    Get PDF
    To increase the rate of convergence of the blind, adaptive, decision feedback equalizer based on the decorrelation criterion, structures have been proposed which dramatically increase the complexity of the equalizer. The complexity of an algorithm has a direct bearing on the cost of implementing the algorithm in either hardware or software. In this thesis, more computationally efficient structures, based on the fast transversal filter and lattice algorithms, are proposed for the decorrelation algorithm which maintain the high rate of convergence of the more complex algorithms. Furthermore, the performance of the decorrelation algorithm in a finite-precision environment will be studied and compared to the widely used LMS algorithm

    Digital Filters and Signal Processing

    Get PDF
    Digital filters, together with signal processing, are being employed in the new technologies and information systems, and are implemented in different areas and applications. Digital filters and signal processing are used with no costs and they can be adapted to different cases with great flexibility and reliability. This book presents advanced developments in digital filters and signal process methods covering different cases studies. They present the main essence of the subject, with the principal approaches to the most recent mathematical models that are being employed worldwide

    Design of a Scalable Polyphony-MIDI Synthesizer for a Low Cost DSP

    Get PDF
    Tässä diplomityössä esitetään Scalable Polyphony-MIDI-standardin soitinvalikoiman toteuttavan musiikkisyntetisaattorin suunnittelu edulliselle signaaliprosessorille. Ensiksi esitellään SPMIDI- standardi ja käytettävä signaaliprosessori. Sen jälkeen kerrataan yleisesti käytössä olevia synteesitekniikoita, ja niiden soveltuvuutta järjestelmiin, joissa laskentateho ja muistin määrä ovat rajoittuneita. Seuraavaksi käydään yksityiskohtaisesti läpi vähentävässä synteesissä käytettäviä oskillaattori- ja suodintekniikoita. Erityistä huomiota kiinnitetään laskostumiseen, joka johtuu perinteisissä aaltomuodoissa, kuten sahalaita- ja pulssi-aallossa, olevista epäjatkuvuuksista, ja olemassa olevia kaistarajoitettuja aaltomuotosynteesimenetelmiä kerrataan. Tämän jälkeen kerrataan olemassaolevia rakenteita laskennallisesti tehokkaille aikavarianteille suotimille. Kokonaan uusi, rajataajuuden ja resonanssin ohjauksen erottava, suodinrakenne esitellään. Analogiseen Korg MS-20-alipäästösuotimeen perustuva rakenne on laskennallisesti erittäin tehokas ja soveltuu hyvin toteutettavaksi vähäbittisillä arkkitehtuureilla. Lopuksi käsitellään toteutukseen liittyviä yksityiskohtia kiinnittäen erityistä huomiota differentioituun paraabeliaaltoon ja MS-20-suotimeen ja rajoitetun laskentakapasiteetin ja laskentaresoluution vaikutuksiin. Tämän jälkeen esitetään joidenkin esimerkkisoitinten toteutus.In this thesis, the design of a music synthesizer implementing the Scalable Polyphony-MIDI soundset on a low cost DSP system is presented. First, the SP-MIDI standard and the target DSP platform are presented followed by review of commonly used synthesis techniques and their applicability to systems with limited computational and memory resources. Next, various oscillator and filter algorithms used in digital subtractive synthesis are reviewed in detail. Special attention is given to the aliasing problem caused by discontinuities in classical waveforms, such as sawtooth and pulse waves and existing methods for bandlimited waveform synthesis are presented. This is followed by review of established structures for computationally efficient time-varying filters. A novel digital structure is presented that decouples the cutoff and resonance controls. The new structure is based on the analog Korg MS-20 lowpass filter and is computationally very efficient and well suited for implementation on low bitdepth architectures. Finally, implementation issues are discussed with emphasis on the Differentiated Parabole Wave oscillator and MS-20 filter structures and the effects of limited computational capability and low bitdepth. This is followed by designs for several example instruments

    Multirate digital filters, filter banks, polyphase networks, and applications: a tutorial

    Get PDF
    Multirate digital filters and filter banks find application in communications, speech processing, image compression, antenna systems, analog voice privacy systems, and in the digital audio industry. During the last several years there has been substantial progress in multirate system research. This includes design of decimation and interpolation filters, analysis/synthesis filter banks (also called quadrature mirror filters, or QMFJ, and the development of new sampling theorems. First, the basic concepts and building blocks in multirate digital signal processing (DSPJ, including the digital polyphase representation, are reviewed. Next, recent progress as reported by several authors in this area is discussed. Several applications are described, including the following: subband coding of waveforms, voice privacy systems, integral and fractional sampling rate conversion (such as in digital audio), digital crossover networks, and multirate coding of narrow-band filter coefficients. The M-band QMF bank is discussed in considerable detail, including an analysis of various errors and imperfections. Recent techniques for perfect signal reconstruction in such systems are reviewed. The connection between QMF banks and other related topics, such as block digital filtering and periodically time-varying systems, based on a pseudo-circulant matrix framework, is covered. Unconventional applications of the polyphase concept are discussed
    corecore