31 research outputs found

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Research on digital image watermark encryption based on hyperchaos

    Get PDF
    The digital watermarking technique embeds meaningful information into one or more watermark images hidden in one image, in which it is known as a secret carrier. It is difficult for a hacker to extract or remove any hidden watermark from an image, and especially to crack so called digital watermark. The combination of digital watermarking technique and traditional image encryption technique is able to greatly improve anti-hacking capability, which suggests it is a good method for keeping the integrity of the original image. The research works contained in this thesis include: (1)A literature review the hyperchaotic watermarking technique is relatively more advantageous, and becomes the main subject in this programme. (2)The theoretical foundation of watermarking technologies, including the human visual system (HVS), the colour space transform, discrete wavelet transform (DWT), the main watermark embedding algorithms, and the mainstream methods for improving watermark robustness and for evaluating watermark embedding performance. (3) The devised hyperchaotic scrambling technique it has been applied to colour image watermark that helps to improve the image encryption and anti-cracking capabilities. The experiments in this research prove the robustness and some other advantages of the invented technique. This thesis focuses on combining the chaotic scrambling and wavelet watermark embedding to achieve a hyperchaotic digital watermark to encrypt digital products, with the human visual system (HVS) and other factors taken into account. This research is of significant importance and has industrial application value

    Digital watermarking in medical images

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/12/2005.This thesis addresses authenticity and integrity of medical images using watermarking. Hospital Information Systems (HIS), Radiology Information Systems (RIS) and Picture Archiving and Communication Systems (P ACS) now form the information infrastructure for today's healthcare as these provide new ways to store, access and distribute medical data that also involve some security risk. Watermarking can be seen as an additional tool for security measures. As the medical tradition is very strict with the quality of biomedical images, the watermarking method must be reversible or if not, region of Interest (ROI) needs to be defined and left intact. Watermarking should also serve as an integrity control and should be able to authenticate the medical image. Three watermarking techniques were proposed. First, Strict Authentication Watermarking (SAW) embeds the digital signature of the image in the ROI and the image can be reverted back to its original value bit by bit if required. Second, Strict Authentication Watermarking with JPEG Compression (SAW-JPEG) uses the same principal as SAW, but is able to survive some degree of JPEG compression. Third, Authentication Watermarking with Tamper Detection and Recovery (AW-TDR) is able to localise tampering, whilst simultaneously reconstructing the original image

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    A DWT based perceptual video coding framework: concepts, issues and techniques

    Get PDF
    The work in this thesis explore the DWT based video coding by the introduction of a novel DWT (Discrete Wavelet Transform) / MC (Motion Compensation) / DPCM (Differential Pulse Code Modulation) video coding framework, which adopts the EBCOT as the coding engine for both the intra- and the inter-frame coder. The adaptive switching mechanism between the frame/field coding modes is investigated for this coding framework. The Low-Band-Shift (LBS) is employed for the MC in the DWT domain. The LBS based MC is proven to provide consistent improvement on the Peak Signal-to-Noise Ratio (PSNR) of the coded video over the simple Wavelet Tree (WT) based MC. The Adaptive Arithmetic Coding (AAC) is adopted to code the motion information. The context set of the Adaptive Binary Arithmetic Coding (ABAC) for the inter-frame data is redesigned based on the statistical analysis. To further improve the perceived picture quality, a Perceptual Distortion Measure (PDM) based on human vision model is used for the EBCOT of the intra-frame coder. A visibility assessment of the quantization error of various subbands in the DWT domain is performed through subjective tests. In summary, all these findings have solved the issues originated from the proposed perceptual video coding framework. They include: a working DWT/MC/DPCM video coding framework with superior coding efficiency on sequences with translational or head-shoulder motion; an adaptive switching mechanism between frame and field coding mode; an effective LBS based MC scheme in the DWT domain; a methodology of the context design for entropy coding of the inter-frame data; a PDM which replaces the MSE inside the EBCOT coding engine for the intra-frame coder, which provides improvement on the perceived quality of intra-frames; a visibility assessment to the quantization errors in the DWT domain

    Efficient compression of motion compensated residuals

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Selected topics on distributed video coding

    Get PDF
    Distributed Video Coding (DVC) is a new paradigm for video compression based on the information theoretical results of Slepian and Wolf (SW), and Wyner and Ziv (WZ). While conventional coding has a rigid complexity allocation as most of the complex tasks are performed at the encoder side, DVC enables a flexible complexity allocation between the encoder and the decoder. The most novel and interesting case is low complexity encoding and complex decoding, which is the opposite of conventional coding. While the latter is suitable for applications where the cost of the decoder is more critical than the encoder's one, DVC opens the door for a new range of applications where low complexity encoding is required and the decoder's complexity is not critical. This is interesting with the deployment of small and battery-powered multimedia mobile devices all around in our daily life. Further, since DVC operates as a reversed-complexity scheme when compared to conventional coding, DVC also enables the interesting scenario of low complexity encoding and decoding between two ends by transcoding between DVC and conventional coding. More specifically, low complexity encoding is possible by DVC at one end. Then, the resulting stream is decoded and conventionally re-encoded to enable low complexity decoding at the other end. Multiview video is attractive for a wide range of applications such as free viewpoint television, which is a system that allows viewing the scene from a viewpoint chosen by the viewer. Moreover, multiview can be beneficial for monitoring purposes in video surveillance. The increased use of multiview video systems is mainly due to the improvements in video technology and the reduced cost of cameras. While a multiview conventional codec will try to exploit the correlation among the different cameras at the encoder side, DVC allows for separate encoding of correlated video sources. Therefore, DVC requires no communication between the cameras in a multiview scenario. This is an advantage since communication is time consuming (i.e. more delay) and requires complex networking. Another appealing feature of DVC is the fact that it is based on a statistical framework. Moreover, DVC behaves as a natural joint source-channel coding solution. This results in an improved error resilience performance when compared to conventional coding. Further, DVC-based scalable codecs do not require a deterministic knowledge of the lower layers. In other words, the enhancement layers are completely independent from the base layer codec. This is called the codec-independent scalability feature, which offers a high flexibility in the way the various layers are distributed in a network. This thesis addresses the following topics: First, the theoretical foundations of DVC as well as the practical DVC scheme used in this research are presented. The potential applications for DVC are also outlined. DVC-based schemes use conventional coding to compress parts of the data, while the rest is compressed in a distributed fashion. Thus, different conventional codecs are studied in this research as they are compared in terms of compression efficiency for a rich set of sequences. This includes fine tuning the compression parameters such that the best performance is achieved for each codec. Further, DVC tools for improved Side Information (SI) and Error Concealment (EC) are introduced for monoview DVC using a partially decoded frame. The improved SI results in a significant gain in reconstruction quality for video with high activity and motion. This is done by re-estimating the erroneous motion vectors using the partially decoded frame to improve the SI quality. The latter is then used to enhance the reconstruction of the finally decoded frame. Further, the introduced spatio-temporal EC improves the quality of decoded video in the case of erroneously received packets, outperforming both spatial and temporal EC. Moreover, it also outperforms error-concealed conventional coding in different modes. Then, multiview DVC is studied in terms of SI generation, which differentiates it from the monoview case. More specifically, different multiview prediction techniques for SI generation are described and compared in terms of prediction quality, complexity and compression efficiency. Further, a technique for iterative multiview SI is introduced, where the final SI is used in an enhanced reconstruction process. The iterative SI outperforms the other SI generation techniques, especially for high motion video content. Finally, fusion techniques of temporal and inter-view side informations are introduced as well, which improves the performance of multiview DVC over monoview coding. DVC is also used to enable scalability for image and video coding. Since DVC is based on a statistical framework, the base and enhancement layers are completely independent, which is an interesting property called codec-independent scalability. Moreover, the introduced DVC scalable schemes show a good robustness to errors as the quality of decoded video steadily decreases with error rate increase. On the other hand, conventional coding exhibits a cliff effect as the performance drops dramatically after a certain error rate value. Further, the issue of privacy protection is addressed for DVC by transform domain scrambling, which is used to alter regions of interest in video such that the scene is still understood and privacy is preserved as well. The proposed scrambling techniques are shown to provide a good level of security without impairing the performance of the DVC scheme when compared to the one without scrambling. This is particularly attractive for video surveillance scenarios, which is one of the most promising applications for DVC. Finally, a practical DVC demonstrator built during this research is described, where the main requirements as well as the observed limitations are presented. Furthermore, it is defined in a setup being as close as possible to a complete real application scenario. This shows that it is actually possible to implement a complete end-to-end practical DVC system relying only on realistic assumptions. Even though DVC is inferior in terms of compression efficiency to the state of the art conventional coding for the moment, strengths of DVC reside in its good error resilience properties and the codec-independent scalability feature. Therefore, DVC offers promising possibilities for video compression with transmission over error-prone environments requirement as it significantly outperforms conventional coding in this case

    Digital watermarking in medical images

    Get PDF
    This thesis addresses authenticity and integrity of medical images using watermarking. Hospital Information Systems (HIS), Radiology Information Systems (RIS) and Picture Archiving and Communication Systems (P ACS) now form the information infrastructure for today's healthcare as these provide new ways to store, access and distribute medical data that also involve some security risk. Watermarking can be seen as an additional tool for security measures. As the medical tradition is very strict with the quality of biomedical images, the watermarking method must be reversible or if not, region of Interest (ROI) needs to be defined and left intact. Watermarking should also serve as an integrity control and should be able to authenticate the medical image. Three watermarking techniques were proposed. First, Strict Authentication Watermarking (SAW) embeds the digital signature of the image in the ROI and the image can be reverted back to its original value bit by bit if required. Second, Strict Authentication Watermarking with JPEG Compression (SAW-JPEG) uses the same principal as SAW, but is able to survive some degree of JPEG compression. Third, Authentication Watermarking with Tamper Detection and Recovery (AW-TDR) is able to localise tampering, whilst simultaneously reconstructing the original image.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Distortion estimates for adaptive lifting transforms with noise

    Get PDF
    Multimedia analysis, enhancement and coding methods often resort to adaptive transforms that exploit local characteristics of the input source. Following the signal decomposition stage, the produced transform coefficients and the adaptive transform parameters can be subject to quantization and/or data corruption (e.g. due to transmission or storage limitations). As a result, mismatches between the analysis- and synthesis-side transform coefficients and adaptive parameters may occur, severely impacting the reconstructed signal and therefore affecting the quality of the subsequent analysis, processing and display task. Hence, a thorough understanding of the quality degradation ensuing from such mismatches is essential for multimedia applications that rely on adaptive signal decompositions. This paper focuses on lifting-based adaptive transforms that represent a broad class of adaptive decompositions. By viewing the mismatches in the transform coefficients and the adaptive parameters as perturbations in the synthesis system, we derive analytic expressions for the expected reconstruction distortion. Our theoretical results are experimentally assessed using 1D adaptive decompositions and motion-adaptive temporal decompositions of video signals

    Single event upset hardened embedded domain specific reconfigurable architecture

    Get PDF
    corecore