68,218 research outputs found

    Low-cost error mitigation by symmetry verification

    Full text link
    We investigate the performance of error mitigation via measurement of conserved symmetries on near-term devices. We present two protocols to measure conserved symmetries during the bulk of an experiment, and develop a zero-cost post-processing protocol which is equivalent to a variant of the quantum subspace expansion. We develop methods for inserting global and local symetries into quantum algorithms, and for adjusting natural symmetries of the problem to boost their mitigation against different error channels. We demonstrate these techniques on two- and four-qubit simulations of the hydrogen molecule (using a classical density-matrix simulator), finding up to an order of magnitude reduction of the error in obtaining the ground state dissociation curve.Comment: Published versio

    Quantum walk speedup of backtracking algorithms

    Full text link
    We describe a general method to obtain quantum speedups of classical algorithms which are based on the technique of backtracking, a standard approach for solving constraint satisfaction problems (CSPs). Backtracking algorithms explore a tree whose vertices are partial solutions to a CSP in an attempt to find a complete solution. Assume there is a classical backtracking algorithm which finds a solution to a CSP on n variables, or outputs that none exists, and whose corresponding tree contains T vertices, each vertex corresponding to a test of a partial solution. Then we show that there is a bounded-error quantum algorithm which completes the same task using O(sqrt(T) n^(3/2) log n) tests. In particular, this quantum algorithm can be used to speed up the DPLL algorithm, which is the basis of many of the most efficient SAT solvers used in practice. The quantum algorithm is based on the use of a quantum walk algorithm of Belovs to search in the backtracking tree. We also discuss how, for certain distributions on the inputs, the algorithm can lead to an exponential reduction in expected runtime.Comment: 23 pages; v2: minor changes to presentatio

    The Quantum Decoding Problem

    Full text link
    One of the founding results of lattice based cryptography is a quantum reduction from the Short Integer Solution problem to the Learning with Errors problem introduced by Regev. It has recently been pointed out by Chen, Liu and Zhandry that this reduction can be made more powerful by replacing the learning with errors problem with a quantum equivalent, where the errors are given in quantum superposition. In the context of codes, this can be adapted to a reduction from finding short codewords to a quantum decoding problem for random linear codes. We therefore consider in this paper the quantum decoding problem, where we are given a superposition of noisy versions of a codeword and we want to recover the corresponding codeword. When we measure the superposition, we get back the usual classical decoding problem for which the best known algorithms are in the constant rate and error-rate regime exponential in the codelength. However, we will show here that when the noise rate is small enough, then the quantum decoding problem can be solved in quantum polynomial time. Moreover, we also show that the problem can in principle be solved quantumly (albeit not efficiently) for noise rates for which the associated classical decoding problem cannot be solved at all for information theoretic reasons. We then revisit Regev's reduction in the context of codes. We show that using our algorithms for the quantum decoding problem in Regev's reduction matches the best known quantum algorithms for the short codeword problem. This shows in some sense the tightness of Regev's reduction when considering the quantum decoding problem and also paves the way for new quantum algorithms for the short codeword problem

    System Design for a Long-Line Quantum Repeater

    Full text link
    We present a new control algorithm and system design for a network of quantum repeaters, and outline the end-to-end protocol architecture. Such a network will create long-distance quantum states, supporting quantum key distribution as well as distributed quantum computation. Quantum repeaters improve the reduction of quantum-communication throughput with distance from exponential to polynomial. Because a quantum state cannot be copied, a quantum repeater is not a signal amplifier, but rather executes algorithms for quantum teleportation in conjunction with a specialized type of quantum error correction called purification to raise the fidelity of the quantum states. We introduce our banded purification scheme, which is especially effective when the fidelity of coupled qubits is low, improving the prospects for experimental realization of such systems. The resulting throughput is calculated via detailed simulations of a long line composed of shorter hops. Our algorithmic improvements increase throughput by a factor of up to fifty compared to earlier approaches, for a broad range of physical characteristics.Comment: 12 pages, 13 figures. v2 includes one new graph, modest corrections to some others, and significantly improved presentation. to appear in IEEE/ACM Transactions on Networkin

    Optimal and Efficient Decoding of Concatenated Quantum Block Codes

    Get PDF
    We consider the problem of optimally decoding a quantum error correction code -- that is to find the optimal recovery procedure given the outcomes of partial "check" measurements on the system. In general, this problem is NP-hard. However, we demonstrate that for concatenated block codes, the optimal decoding can be efficiently computed using a message passing algorithm. We compare the performance of the message passing algorithm to that of the widespread blockwise hard decoding technique. Our Monte Carlo results using the 5 qubit and Steane's code on a depolarizing channel demonstrate significant advantages of the message passing algorithms in two respects. 1) Optimal decoding increases by as much as 94% the error threshold below which the error correction procedure can be used to reliably send information over a noisy channel. 2) For noise levels below these thresholds, the probability of error after optimal decoding is suppressed at a significantly higher rate, leading to a substantial reduction of the error correction overhead.Comment: Published versio

    Magic-State Functional Units: Mapping and Scheduling Multi-Level Distillation Circuits for Fault-Tolerant Quantum Architectures

    Full text link
    Quantum computers have recently made great strides and are on a long-term path towards useful fault-tolerant computation. A dominant overhead in fault-tolerant quantum computation is the production of high-fidelity encoded qubits, called magic states, which enable reliable error-corrected computation. We present the first detailed designs of hardware functional units that implement space-time optimized magic-state factories for surface code error-corrected machines. Interactions among distant qubits require surface code braids (physical pathways on chip) which must be routed. Magic-state factories are circuits comprised of a complex set of braids that is more difficult to route than quantum circuits considered in previous work [1]. This paper explores the impact of scheduling techniques, such as gate reordering and qubit renaming, and we propose two novel mapping techniques: braid repulsion and dipole moment braid rotation. We combine these techniques with graph partitioning and community detection algorithms, and further introduce a stitching algorithm for mapping subgraphs onto a physical machine. Our results show a factor of 5.64 reduction in space-time volume compared to the best-known previous designs for magic-state factories.Comment: 13 pages, 10 figure
    • …
    corecore