729 research outputs found

    A novel equivalent definition of modified Bessel functions for performance analysis of multi-hop wireless communication systems

    Get PDF
    A statistical model is derived for the equivalent signal-to-noise ratio of the Source-to-Relay-to-Destination (S-R-D) link for Amplify-and-Forward (AF) relaying systems that are subject to block Rayleigh-fading. The probability density function and the cumulated density function of the S-R-D link SNR involve modified Bessel functions of the second kind. Using fractional-calculus mathematics, a novel approach is introduced to rewrite those Bessel functions (and the statistical model of the S-R-D link SNR) in series form using simple elementary functions. Moreover, a statistical characterization of the total receive-SNR at the destination, corresponding to the S-R-D and the S-D link SNR, is provided for a more general relaying scenario in which the destination receives signals from both the relay and the source and processes them using maximum ratio combining (MRC). Using the novel statistical model for the total receive SNR at the destination, accurate and simple analytical expressions for the outage probability, the bit error probability, and the ergodic capacity are obtained. The analytical results presented in this paper provide a theoretical framework to analyze the performance of the AF cooperative systems with an MRC receiver

    Dual-Branch MRC Receivers under Spatial Interference Correlation and Nakagami Fading

    Full text link
    Despite being ubiquitous in practice, the performance of maximal-ratio combining (MRC) in the presence of interference is not well understood. Because the interference received at each antenna originates from the same set of interferers, but partially de-correlates over the fading channel, it possesses a complex correlation structure. This work develops a realistic analytic model that accurately accounts for the interference correlation using stochastic geometry. Modeling interference by a Poisson shot noise process with independent Nakagami fading, we derive the link success probability for dual-branch interference-aware MRC. Using this result, we show that the common assumption that all receive antennas experience equal interference power underestimates the true performance, although this gap rapidly decays with increasing the Nakagami parameter mIm_{\text{I}} of the interfering links. In contrast, ignoring interference correlation leads to a highly optimistic performance estimate for MRC, especially for large mIm_{\text{I}}. In the low outage probability regime, our success probability expression can be considerably simplified. Observations following from the analysis include: (i) for small path loss exponents, MRC and minimum mean square error combining exhibit similar performance, and (ii) the gains of MRC over selection combining are smaller in the interference-limited case than in the well-studied noise-limited case.Comment: to appear in IEEE Transactions on Communication

    Performance Analysis of SSK-NOMA

    Full text link
    In this paper, we consider the combination between two promising techniques: space-shift keying (SSK) and non-orthogonal multiple access (NOMA) for future radio access networks. We analyze the performance of SSK-NOMA networks and provide a comprehensive analytical framework of SSK-NOMA regarding bit error probability (BEP), ergodic capacity and outage probability. It is worth pointing out all analysis also stand for conventional SIMO-NOMA networks. We derive closed-form exact average BEP (ABEP) expressions when the number of users in a resource block is equal to i.e., L=3L=3. Nevertheless, we analyze the ABEP of users when the number of users is more than i.e., L3L\geq3, and derive bit-error-rate (BER) union bound since the error propagation due to iterative successive interference canceler (SIC) makes the exact analysis intractable. Then, we analyze the achievable rate of users and derive exact ergodic capacity of the users so the ergodic sum rate of the system in closed-forms. Moreover, we provide the average outage probability of the users exactly in the closed-form. All derived expressions are validated via Monte Carlo simulations and it is proved that SSK-NOMA outperforms conventional NOMA networks in terms of all performance metrics (i.e., BER, sum rate, outage). Finally, the effect of the power allocation (PA) on the performance of SSK-NOMA networks is investigated and the optimum PA is discussed under BER and outage constraints
    corecore