1,244 research outputs found

    A novel cooperative opportunistic routing scheme for underwater sensor networks

    Get PDF
    Increasing attention has recently been devoted to underwater sensor networks (UWSNs) because of their capabilities in the ocean monitoring and resource discovery. UWSNs are faced with different challenges, the most notable of which is perhaps how to efficiently deliver packets taking into account all of the constraints of the available acoustic communication channel. The opportunistic routing provides a reliable solution with the aid of intermediate nodes’ collaboration to relay a packet toward the destination. In this paper, we propose a new routing protocol, called opportunistic void avoidance routing (OVAR), to address the void problem and also the energy-reliability trade-off in the forwarding set selection. OVAR takes advantage of distributed beaconing, constructs the adjacency graph at each hop and selects a forwarding set that holds the best trade-off between reliability and energy efficiency. The unique features of OVAR in selecting the candidate nodes in the vicinity of each other leads to the resolution of the hidden node problem. OVAR is also able to select the forwarding set in any direction from the sender, which increases its flexibility to bypass any kind of void area with the minimum deviation from the optimal path. The results of our extensive simulation study show that OVAR outperforms other protocols in terms of the packet delivery ratio, energy consumption, end-to-end delay, hop count and traversed distance

    Game Theory-Based Cooperation for Underwater Acoustic Sensor Networks: Taxonomy, Review, Research Challenges and Directions.

    Get PDF
    Exploring and monitoring the underwater world using underwater sensors is drawing a lot of attention these days. In this field cooperation between acoustic sensor nodes has been a critical problem due to the challenging features such as acoustic channel failure (sound signal), long propagation delay of acoustic signal, limited bandwidth and loss of connectivity. There are several proposed methods to improve cooperation between the nodes by incorporating information/game theory in the node's cooperation. However, there is a need to classify the existing works and demonstrate their performance in addressing the cooperation issue. In this paper, we have conducted a review to investigate various factors affecting cooperation in underwater acoustic sensor networks. We study various cooperation techniques used for underwater acoustic sensor networks from different perspectives, with a concentration on communication reliability, energy consumption, and security and present a taxonomy for underwater cooperation. Moreover, we further review how the game theory can be applied to make the nodes cooperate with each other. We further analyze different cooperative game methods, where their performance on different metrics is compared. Finally, open issues and future research direction in underwater acoustic sensor networks are highlighted

    Distributed space–time cooperative schemes for underwater acoustic communications

    Get PDF
    Author Posting. © IEEE, 2008. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in IEEE Journal of Oceanic Engineering 33 (2008): 489-50, doi:10.1109/JOE.2008.2005338.In resource limited, large scale underwater sensor networks, cooperative communication over multiple hops offers opportunities to save power. Intermediate nodes between source and destination act as cooperative relays. Herein, protocols coupled with space-time block code (STBC) strategies are proposed and analyzed for distributed cooperative communication. Amplify-and-forward-type protocols are considered, in which intermediate relays do not attempt to decode the information. The Alamouti-based cooperative scheme proposed by Hua (2003) for flat-fading channels is generalized to work in the presence of multipath, thus addressing a main characteristic of underwater acoustic channels. A time-reversal distributed space-time block code (TR-DSTBC) is proposed, which extends the dual-antenna TR-STBC (time-reversal space-time block code) approach from Lindskog and Paulraj (2000) to a cooperative communication scenario for signaling in multipath. It is first shown that, just as in the dual-antenna STBC case, TR along with the orthogonality of the DSTBC essentially allows for decoupling of the vector intersymbol interference (ISI) detection problem into separate scalar problems, and thus yields strong performance (compared with single-hop communication) and with substantially reduced complexity over nonorthogonal schemes. Furthermore, a performance analysis of the proposed scheme is carried out to provide insight on the performance gains, which are further confirmed via numerical results based on computer simulations and field data experiments

    Asynchronous cooperative transmission in underwater acoustic networks

    Get PDF
    Multi-path fading, one of the key factors that deteriorate quality of service (QOS) in Underwater Acoustic Networks (UANs), is investigated under different underwater scenarios in this paper. To improve the Bit Error Rate (BER) performance, the techniques of cooperative diversities are applied. Considering realistic physical model and cooperative diversity techniques, two asynchronous forwarding schemes, namely Underwater Amplify-and-Forward (UAF) and Underwater Decode-and-Forward (UDF), are proposed and analyzed. The results show that both UDF and UAF have better performance than direct transmission. Furthermore, an adaptive and hybrid forwarding scheme is proposed based on UAF and UDF. © 2011 IEEE.published_or_final_versionThe 2011 IEEE Symposium on Underwater Technology (UT) and 2011 Workshop on Scientific Use of Submarine Cables and Related Technologies (SSC), Tokyo, Japan, 5-8 April 2011. In Proceedings of SSC'11, 2011, p. 1-

    Internode Distance-Based Redundancy Reliable Transport in Underwater Sensor Networks

    Get PDF
    Underwater communication is a very challenging topic. Protocols used in terrestrial sensor networks cannot be directly applied in the underwater world. High-bit error rate and large propagation delay make the design of transport protocols especially awkward. ARQ-based reliable transport schemes are not appropriate in underwater environments due to large propagation delay, low communication bandwidth, and high error probability. Thus, we focus on redundancy-based transport schemes in this paper. We first investigate three schemes that employ redundancy mechanisms at the bit and/or packet level to increase the reliability in a direct link scenario. Then, we show that the broadcast property of the underwater channel allows us to extend those schemes to a case with node cooperative communication. Based on our analysis, an adaptive redundancy transport protocol (ARRTP) for underwater sensor networks is proposed. We suggest an architecture for implementation. For two kinds of topologies, namely, regular and random, we show that ARRTP presents a better transmission success probability and energy efficiency tradeoff for single- and multihop transmissions. We also offer an integrated case study to show that ARRTP is not only supplying reliability but also has some positive effect in guiding the deployment of underwater sensor nodes

    A stateless opportunistic routing protocol for underwater sensor networks

    Get PDF
    Routing packets in Underwater Sensor Networks (UWSNs) face different challenges, the most notable of which is perhaps how to deal with void communication areas. While this issue is not addressed in some underwater routing protocols, there exist some partially state-full protocols which can guarantee the delivery of packets using excessive communication overhead. However, there is no fully stateless underwater routing protocol, to the best of our knowledge, which can detect and bypass trapped nodes. A trapped node is a node which only leads packets to arrive finally at a void node. In this paper, we propose a Stateless Opportunistic Routing Protocol (SORP), in which the void and trapped nodes are locally detected in the different area of network topology to be excluded during the routing phase using a passive participation approach. SORP also uses a novel scheme to employ an adaptive forwarding area which can be resized and replaced according to the local density and placement of the candidate forwarding nodes to enhance the energy efficiency and reliability. We also make a theoretical analysis on the routing performance in case of considering the shadow zone and variable propagation delays. The results of our extensive simulation study indicate that SORP outperforms other protocols regarding the routing performance metrics
    • …
    corecore