2,911 research outputs found

    Quantum-mechanical communication theory

    Get PDF
    Optimum signal reception using quantum-mechanical communication theor

    Advanced data communication techniques for sub-sea applications

    Get PDF
    This thesis details research carried out in the through-water data communication field. An overview of the phenomena that prohibit acoustic communication in long-range shallow-water channels is constructed. Background research found that robust communications has not been achieved using single receiver reception in this environment. This work investigates the modulation technique itself and aims to improve on existing schemes (that have been applied to this environment). This is achieved with innovative techniques, based on multiple-frequency-shift-keying (MFSK) and space-frequency-shift-keying (SFSK). A number of industrial specified restrictions are placed on this work, including bandwidth restriction. Novel ways of intrinsically transmitting synchronisation information are therefore implemented. The development of appropriate systems is covered with general and platform specific implementation strategies being covered. A single modulation scheme (the three-chip four-frequency-shift-keying, 3C4FSK, scheme) has been put forward for consideration in any future research. Practical lab-based tests and the mathematical analysis is detailed. Conclusions recommend further funding of long-range shallow sea-water trails of the 3C4FSK scheme and for the industrial scope of this work to allow investigation into multiple receiver systems that allow spatial processing of the signal as these schemes have been shown lately to have potential in long-range channels

    Optical Data Downlinks from Earth Observation Platforms

    Get PDF
    The increasing resolution of earth observation sensors will require much higher data rates for the data downlink in future than is feasible with conventional RF-technology. This applies for earth observation satellites as well as for aeronautic observation platforms, such as aircraft or stratospheric high altitude platforms. The most promising solution for this data downlink bottleneck is the application of optical free space transmission technologies. DLR has built diverse atmospheric flight terminals and performed several trials of optical downlinks from space (together with partnering organizations) as well as from atmospheric carriers in recent years. Here we present and compare results of such communication system trials

    Terrestrial Coherent Free-Space Optical Communication Systems

    Get PDF

    A comparison of processing approaches for distributed radar sensing

    Get PDF
    Radar networks received increasing attention in recent years as they can outperform single monostatic or bistatic systems. Further attention is being dedicated to these systems as an application of the MIMO concept, well know in communications for increasing the capacity of the channel and improving the overall quality of the connection. However, it is here shown that radar network can take advantage not only from the angular diversity in observing the target, but also from a variety of ways of processing the received signals. The number of devices comprising the network has also been taken into the analysis. Detection and false alarm are evaluated in noise only and clutter from a theoretical and simulated point of view. Particular attention is dedicated to the statistics behind the processing. Experiments have been performed to evaluate practical applications of the proposed processing approaches and to validate assumptions made in the theoretical analysis. In particular, the radar network used for gathering real data is made up of two transmitters and three receivers. More than two transmitters are well known to generate mutual interference and therefore require additional e�fforts to mitigate the system self-interference. However, this allowed studying aspects of multistatic clutter, such as correlation, which represent a first and novel insight in this topic. Moreover, two approaches for localizing targets have been developed. Whilst the first is a graphic approach, the second is hybrid numerical (partially decentralized, partially centralized) which is clearly shown to improve dramatically the single radar accuracy. Finally the e�ects of exchanging angular with frequency diversity are shown as well in some particular cases. This led to develop the Frequency MIMO and the Frequency Diverse Array, according to the separation of two consecutive frequencies. The latter is a brand new topic in technical literature, which is attracting the interest of the technical community because of its potential to generate range-dependant patterns. Both the latter systems can be used in radar-designing to improve the agility and the effciency of the radar
    corecore