4,134 research outputs found

    On the Asymptotic Performance of Bit-Wise Decoders for Coded Modulation

    Get PDF
    Two decoder structures for coded modulation over the Gaussian and flat fading channels are studied: the maximum likelihood symbol-wise decoder, and the (suboptimal) bit-wise decoder based on the bit-interleaved coded modulation paradigm. We consider a 16-ary quadrature amplitude constellation labeled by a Gray labeling. It is shown that the asymptotic loss in terms of pairwise error probability, for any two codewords caused by the bit-wise decoder, is bounded by 1.25 dB. The analysis also shows that for the Gaussian channel the asymptotic loss is zero for a wide range of linear codes, including all rate-1/2 convolutional codes

    Bit-Interleaved Coded Energy-Based Modulation with Iterative Decoding

    Full text link
    This paper develops a low-complexity near-optimal non-coherent receiver for a multi-level energy-based coded modulation system. Inspired by the turbo processing principle, we incorporate the fundamentals of bit-interleaved coded modulation with iterative decoding (BICM-ID) into the proposed receiver design. The resulting system is called bit-interleaved coded energy-based modulation with iterative decoding (BICEM-ID) and its error performance is analytically studied. Specifically, we derive upper bounds on the average pairwise error probability (PEP) of the non-coherent BICEM-ID system in the feedback-free (FF) and error-free feedback (EFF) scenarios. It is revealed that the definition of the nearest neighbors, which is important in the performance analysis in the FF scenario, is very different from that in the coherent BICM-ID counterpart. The analysis also reveals how the mapping from coded bits to energy levels influences the diversity order and coding gain of the BICEM-ID systems. A design criterion for good mappings is then formulated and an algorithm is proposed to find a set of best mappings for BICEM-ID. Finally, simulation results corroborate the main analytical findings

    Performance Analysis of Bit-Interleaved Space-Time (BI-ST) Coded Systems Over Wireless Channels

    Get PDF
    In this paper a union bound on the bit error probability of bit-interleaved space-time (BI-ST) coded systems is derived. The derivation is based on the uniform interleaving assumption of the coded sequence prior to transmission over the multiple antennas. The performance of a BI-ST coded system is a function of how the bit errors are distributed over the signals in the codeword. In this paper, we derive this distribution as well as the corresponding pairwise error probability. The bound is a function of the distance spectrum of the code, the signal constellation used and the space-time (ST) encoding scheme. The bound is derived for a general BI-ST coded system and applied to two specific examples; namely, the BI space-time coded modulation (BI-STCM) and the BI space-time block codes (BI-STBC). Results show that the analysis provides a close approximation to the performance for a wide range of signal-to-noise ratios (SNR)

    Performance Analysis of Bit-Interleaved Space-Time (BI-ST) Coded Systems Over Wireless Channels

    Get PDF
    In this paper a union bound on the bit error probability of bit-interleaved space-time (BI-ST) coded systems is derived. The derivation is based on the uniform interleaving assumption of the coded sequence prior to transmission over the multiple antennas. The performance of a BI-ST coded system is a function of how the bit errors are distributed over the signals in the codeword. In this paper, we derive this distribution as well as the corresponding pairwise error probability. The bound is a function of the distance spectrum of the code, the signal constellation used and the space-time (ST) encoding scheme. The bound is derived for a general BI-ST coded system and applied to two specific examples; namely, the BI space-time coded modulation (BI-STCM) and the BI space-time block codes (BI-STBC). Results show that the analysis provides a close approximation to the performance for a wide range of signal-to-noise ratios (SNR)

    Bit-Interleaved Coded Modulation Revisited: A Mismatched Decoding Perspective

    Get PDF
    We revisit the information-theoretic analysis of bit-interleaved coded modulation (BICM) by modeling the BICM decoder as a mismatched decoder. The mismatched decoding model is well-defined for finite, yet arbitrary, block lengths, and naturally captures the channel memory among the bits belonging to the same symbol. We give two independent proofs of the achievability of the BICM capacity calculated by Caire et al. where BICM was modeled as a set of independent parallel binary-input channels whose output is the bitwise log-likelihood ratio. Our first achievability proof uses typical sequences, and shows that due to the random coding construction, the interleaver is not required. The second proof is based on the random coding error exponents with mismatched decoding, where the largest achievable rate is the generalized mutual information. We show that the generalized mutual information of the mismatched decoder coincides with the infinite-interleaver BICM capacity. We also show that the error exponent -and hence the cutoff rate- of the BICM mismatched decoder is upper bounded by that of coded modulation and may thus be lower than in the infinite-interleaved model. We also consider the mutual information appearing in the analysis of iterative decoding of BICM with EXIT charts. We show that the corresponding symbol metric has knowledge of the transmitted symbol and the EXIT mutual information admits a representation as a pseudo-generalized mutual information, which is in general not achievable. A different symbol decoding metric, for which the extrinsic side information refers to the hypothesized symbol, induces a generalized mutual information lower than the coded modulation capacity.Comment: submitted to the IEEE Transactions on Information Theory. Conference version in 2008 IEEE International Symposium on Information Theory, Toronto, Canada, July 200

    Labeling Diversity for 2x2 WLAN Coded-Cooperative Networks

    Get PDF
    Labelling diversity is an efficient technique recently proposed in the literature and aims to improve the bit error rate(BER) performance of wireless local area network (WLAN) systems with two transmit and two receive antennas without increasing the transmit power and bandwidth requirements. In this paper, we employ labelling diversity with different space-time channel codes such as convolutional, turbo and low density parity check (LDPC) for both point-to-point and coded-cooperative communication scenarios. Joint iterative decoding schemes for distributed turbo and LDPC codes are also presented. BER performance bounds at an error floor (EF) region are derived and verified with the help of numerical simulations for both cooperative and non-cooperative schemes. Numerical simulations show that the coded-cooperative schemes with labelling diversity achieve better BER performances and use of labelling diversity at the source node significantly lowers relay outage probability and hence the overall BER performance of the coded-cooperative scheme is improved manifolds

    Near-Capacity Turbo Trellis Coded Modulation Design

    No full text
    Bandwidth efficient parallel-concatenated Turbo Trellis Coded Modulation (TTCM) schemes were designed for communicating over uncorrelated Rayleigh fading channels. A symbol-based union bound was derived for analysing the error floor of the proposed TTCM schemes. A pair of In-phase (I) and Quadrature-phase (Q) interleavers were employed for interleaving the I and Q components of the TTCM coded symbols, in order to attain an increased diversity gain. The decoding convergence of the IQ-TTCM schemes was analysed using symbol based EXtrinsic Information Transfer (EXIT) charts. The best TTCM component codes were selected with the aid of both the symbol-based union bound and non-binary EXIT charts for the sake of designing capacity-approaching IQ-TTCM schemes in the context of 8PSK, 16QAM and 32QAM signal sets. It will be shown that our TTCM design is capable of approaching the channel capacity within 0.5 dB at a throughput of 4 bit/s/Hz, when communicating over uncorrelated Rayleigh fading channels using 32QAM
    corecore