1,067 research outputs found

    Performance Analysis for Multichannel Reception of OOFSK Signaling

    Full text link
    In this paper, the error performance of on-off frequency shift keying (OOFSK) modulation over fading channels is analyzed when the receiver is equipped with multiple antennas. The analysis is conducted in two cases: the coherent scenario where the fading is perfectly known at the receiver, and the noncoherent scenario where neither the receiver nor the transmitter knows the fading coefficients. For both cases, the maximum a posteriori probability (MAP) detection rule is derived and analytical probability of error expressions are obtained. The effect of fading correlation among the receiver antennas is also studied. Simulation results indicate that for sufficiently low duty cycle values, lower probability of error values with respect to FSK signaling are achieved. Equivalently, when compared to FSK modulation, OOFSK with low duty cycle requires less energy to achieve the same probability of error, which renders this modulation a more energy efficient transmission technique.Comment: Proc. of the 2007 IEEE Wireless Communications and Networking Conferenc

    Communications over fading channels with partial channel information : performance and design criteria

    Get PDF
    The effects of system parameters upon the performance are quantified under the assumption that some statistical information of the wireless fading channels is available. These results are useful in determining the optimal design of system parameters. Suboptimal receivers are designed for systems that are constrained in terms of implementation complexity. The achievable rates are investigated for a wireless communication system when neither the transmitter nor the receiver has prior knowledge of the channel state information (CSI). Quantitative results are provided for independent and identically distributed (i.i.d.) Gaussian signals. A simple, low-duty-cycle signaling scheme is proposed to improve the information rates for low signal-to-noise ratio (SNR), and the optimal duty cycle is expressed as a function of the fading rate and SNR. It is demonstrated that the resource allocations and duty cycles developed for Gaussian signals can also be applied to systems using other signaling formats. The average SNR and outage probabilities are examined for amplify-and-forward cooperative relaying schemes in Rayleigh fading channels. Simple power allocation strategies are determined by using knowledge of the mean strengths of the channels. Suboptimal algorithms are proposed for cases that optimal receivers are difficult to implement. For systems with multiple transmit antennas, an iterative method is used to avoid the inversion of a data-dependent matrix in decision-directed channel estimation. When CSI is not available, two noncoherent detection algorithms are formulated based on the generalized likelihood ratio test (GLRT). Numerical results are presented to demonstrate the use of GLRT-based detectors in systems with cooperative diversity

    A learning receiver for communication in three-component multipath channels

    Get PDF
    An adaptive receiver is designed for transmissions through a time-varying multipath channel which may include both specular and diffuse components. The design is based on the theory of unsupervised learning machines and the receiver is a recursive structure which does not grow in complexity with each new observation, but is Bayes\u27 optimal at each instant of time. The multipath medium is modelled as an aggregate of L conditionally independent transmission paths, each consisting of random and/or fixed reflections, and is identified in terms of three components: (1) indirect diffuse scatter, (2) indirect specular reflection, and (3) direct transmission. The channel parameters are time-varying and either independent from one signaling interval to the next or at most M-th order Markov dependent. A review of machines that learn without a teacher is presented and the learning receiver for three-component multipath is designed and modelled on the digital computer. A Monte Carlo simulation is used to estimate the performance when the channel is either Rician or nonfading. This performance, in terms of probability of error, is shown to be consistent with the existing coherent receivers and improves on their performance when the correlation between observations is increased --Abstract, page ii

    Principles of Transmission and Detection of Digital Signals

    Get PDF
    • …
    corecore