6 research outputs found

    Stacked Modulation Formats Enabling Highest-Sensitivity Optical Free-Space Communications

    Get PDF
    Die vorliegende Arbeit befasst sich mit hochempfindlichen optischen Kommunikationssystemen, wie sie z.B. bei Intersatellitenlinks verwendet werden. Theoretische Überlegungen zur Steigerung der Empfängerempfindlichkeit werden mit Simulations- und Messergebnissen ergänzt und verifiziert. Auf Grund der steigenden Nachfrage nach optischen Links zwischen Satelliten stellt sich die Frage, was sind geeignete Eckparameter, um ein solches System zu beschreiben. Die gigantischen Datenmengen, die von diversen Messgeräten, wie z.B. hochauflösende Kameras auf einem Satelliten generiert werden, bringen die Kapazitäten klassischer HF-Datenlinks an ihre Grenzen. Hier können optische Kommunikationssysteme auf Grund ihrer hohen Trägerfrequenz im Infrarotbereich sehr hohe Datenraten im Terabit/s Bereich ermöglichen. Systeme mit Radiowellen im GHz Bereich als Trägerfrequenz sind hier deutlich limitierter. [7] Linkdistanz, verfügbare Leistung, Pointinggenauigkeit und verfügbare Antennengröße sind einige Parameter, die einen wichtigen Einfluss auf die Leistungsfähigkeit des Systems haben. Je größer die Distanz und desto kleiner die verfügbare Antennengröße sowohl am Sender als auch am Empfänger sind, desto weniger Signalleistung wird den Detektor erreichen. Nimmt man dann noch ungenaues Pointing hinzu, d.h. Sender und Empfänger sind nicht exakt aufeinander ausgerichtet, treten zusätzliche Verluste auf. [7] Ziel dieser Arbeit ist es, ein vereinfachtes System zu implementieren und zu testen, das mit möglichst wenigen Photonen pro Bit bei einer gegebenen Bitfehlerwahrscheinlichkeit bei einer möglichst hohen Datenrate arbeiten kann. Hierfür werden alle Freiheitsgrade einer optischen Welle zur Modulation verwendet, um mit sog. „Stapeln“ von Modulationsformaten eine Empfindlichkeitssteigerung zu erreichen. Die Amplitude des Signals wird durch Pulspositionsmodulation (PPM) moduliert, wobei das zeitlich variable Vorhandensein eines Pulses innerhalb des Symbols die Information enthält. Dieses Modulationsformat weist bis dato die höchste Empfindlichkeit in Literatur und Experimenten auf [4]. Je mehr Möglichkeiten es gibt, einen Puls in einem Symbol zu platzieren, desto höher ist die zu erwartende Empfindlichkeit des Systems. Mit anderen Worten: Steigert man die zeitliche Dauer eines PPM-Symbols, so wächst ebenfalls die Empfängerempfindlichkeit. Da bei diesem Ansatz die Datenrate sinkt, wird in dieser Arbeit eine andere Methode vorgestellt, die Empfindlichkeit eines Übertragungssystems zu steigern, ohne die Symbollänge unnötig in die Länge zu ziehen. Diese Arbeit befasst sich mit dem Stapeln (sog. „Stacking“) von Modulationsformaten, in dem neben der Amplitudenmodulation weitere Freiheitsgrade, wie die Frequenz, Phase und Polarisation geschickt genutzt werden. Bei der Frequenzumtastung (FSK) wird die optische Frequenz je nach Symbol um ein gewisses Maß verschoben. Bei der polarisations-geschalteten Quadratur-Phasenumtastung (PS-QPSK) werden sowohl die Phase, als auch die Polarisation der optischen Welle moduliert [12]. Als Endergebnis erhält man PPM-FSK-PS-QPSK als Modulationsformat mit hoher Empfindlichkeit. Gegenüber dem reinen PPM wird eine theoretische Empfindlichkeitssteigerung von mehr als 1 dB erreicht. Sowohl Simulations- als auch Messergebnisse bestätigen den Empfindlichkeitsgewinn

    Multidimensional Optimized Optical Modulation Formats

    Get PDF
    This chapter overviews the relatively large body of work (experimental and theoretical) on modulation formats for optical coherent links. It first gives basic definitions and performance metrics for modulation formats that are common in the literature. Then, the chapter discusses optimization of modulation formats in coded systems. It distinguishes between three cases, depending on the type of decoder employed, which pose quite different requirements on the choice of modulation format. The three cases are soft-decision decoding, hard-decision decoding, and iterative decoding, which loosely correspond to weak, medium, and strong coding, respectively. The chapter also discusses the realizations of the transmitter and transmission link properties and the receiver algorithms, including DSP and decoding. It further explains how to simply determine the transmitted symbol from the received 4D vector, without resorting to a full search of the Euclidean distances to all points in the whole constellation

    Optically amplified free-space optical communication systems

    Get PDF
    This thesis investigates terrestrial atmospheric FSO communication systems operating under the influence of turbulence-induced scintillation, beam spreading, optical interchannel crosstalk, amplified spontaneous emission noise and pointing errors. On-off keying-non–return-to-zero (OOK-NRZ) and digital pulse position (DPPM) are the modulation schemes used for the calculations. The possibility of using sophisticated performance evaluation techniques such as moment generating function (MGF)-based Chernoff bound (CB), modified Chernoff bound (MCB) and saddlepoint approximation (SPA) for terrestrial DPPM and OOK-NRZ–based FSO communication systems employing optical amplification are investigated and compared with the conventional Gaussian approximation (GA) method. Relative to the other techniques, the MCB can be considered a safe estimation method for practical systems since it provides an upper bound upon the BER. The turbulent optically preamplified DPPM FSO receiver employing integration over a time slot and comparing the results to choose the largest slot, is seen to give better advantage (about 7 - 9 dB) compared to an equivalent employing OOK-NRZ signalling. The atmospheric turbulence-induced spreading of the beam, ASE noise, and pointing error are seen to combine in a problematic way resulting in high BERs, depending on the size of the receiver and the beam’s jitter standard deviation. Using FSO communication for the distribution links of a passive optical network-like wavelength division multiplexing access network is investigated in the presence of atmospheric turbulence, ASE noise and interchannel crosstalk. The results show that, for clear atmosphere, FSO distribution link length up to 2000 m can be reliably used (depending on turbulence strength) to achieve human eye safety and high capacity access networks. Also, error floors occur due to turbulence accentuated crosstalk effect for the cases of (i) signal turbulent, but crosstalk not and (ii) crosstalk turbulent, but signal not

    Hybrid fibre and free-space optical solutions in optical access networks

    Get PDF
    This thesis evaluates the potentials of hybrid fibre and free space optical (FSO) communications access networks in providing a possible solution to an all optical access network. In such network architectures, the FSO link can extend the system to areas where an optical fibre link is not feasible, and/or provide limited mobility for indoor coverage. The performance of hybrid fibre and FSO (HFFSO) networks based on digital pulse position modulation (DPPM), for both the indoor and outdoor environments of the optical access network, are compared with the performance of such a network that is based on conventional on-off keying non-return-to-zero (OOK NRZ) modulation using results obtained through computational and analytical modelling. Wavelength division multiplexing (WDM) and/or code division multiple access (CDMA) are incorporated into the network for high speed transmission and/or network scalability. The impacts of optical scintillation, beam spreading and coupling losses, multiple access interference (MAI), linear optical crosstalk and amplified spontaneous emission noise (ASE) on the performance of hybrid fibre and FSO (HFFSO) access networks are analysed, using performance evaluation methods based on simple Gaussian approximation (GA) and more complex techniques based on moment generating function (MGF), including the Chernoff bound (CB), modified Chernoff bound (MCB) and saddlepoint approximation (SPA). Results in the form of bit error rate (BER), power penalty, required optical power and outage probability are presented, and both the CB and MCB, which are upper bounds, are suggested as safer methods of assessing the performance of practical systems. The possibility of using a CDMA-based HFFSO network to provide high speed optical transmission coverage in an indoor environment is investigated. The results show a reduction in transmit power of mobile devices of about 9 – 20 dB (depending on number of active users) when an optical amplifier is used in the system compared to a non-amplified system, and up to 2.8 dB improvement over OOK NRZ receiver sensitivity is provided by a DPPM system using integrate and compare circuitry for maximum likelihood detection, and at coding level of two, for minimum bandwidth utilization. Outdoor HFFSO networks using only WDM, and incorporating CDMA with WDM, are also investigated. In the presence of atmospheric scintillations, an OOK system is required (for optimum performance) to continuously adapt its decision threshold to the fluctuating instantaneous irradiance. This challenge is overcome by using the maximum likelihood detection DPPM system, and necessitated the derivation of an interchannel crosstalk model for WDM DPPM systems. It is found that optical scintillation worsens the effect of interchannel crosstalk in outdoor HFFSO WDM systems, and results in error floors particularly in the upstream transmission, which are raised when CDMA is incorporated into the system, because of MAI. In both outdoor HFFSO networks (with WDM only and with WDM incorporating CDMA), the optical amplifier is found necessary in achieving acceptable BER, and with a feeder fibre of 20 km and distributive FSO link length of 1500 m, high speed broadband services can be provided to users at safe transmit power at all turbulence levels in clear air atmosphere

    Hybrid fibre and free-space optical solutions in optical access networks

    Get PDF
    This thesis evaluates the potentials of hybrid fibre and free space optical (FSO) communications access networks in providing a possible solution to an all optical access network. In such network architectures, the FSO link can extend the system to areas where an optical fibre link is not feasible, and/or provide limited mobility for indoor coverage. The performance of hybrid fibre and FSO (HFFSO) networks based on digital pulse position modulation (DPPM), for both the indoor and outdoor environments of the optical access network, are compared with the performance of such a network that is based on conventional on-off keying non-return-to-zero (OOK NRZ) modulation using results obtained through computational and analytical modelling. Wavelength division multiplexing (WDM) and/or code division multiple access (CDMA) are incorporated into the network for high speed transmission and/or network scalability. The impacts of optical scintillation, beam spreading and coupling losses, multiple access interference (MAI), linear optical crosstalk and amplified spontaneous emission noise (ASE) on the performance of hybrid fibre and FSO (HFFSO) access networks are analysed, using performance evaluation methods based on simple Gaussian approximation (GA) and more complex techniques based on moment generating function (MGF), including the Chernoff bound (CB), modified Chernoff bound (MCB) and saddlepoint approximation (SPA). Results in the form of bit error rate (BER), power penalty, required optical power and outage probability are presented, and both the CB and MCB, which are upper bounds, are suggested as safer methods of assessing the performance of practical systems. The possibility of using a CDMA-based HFFSO network to provide high speed optical transmission coverage in an indoor environment is investigated. The results show a reduction in transmit power of mobile devices of about 9 – 20 dB (depending on number of active users) when an optical amplifier is used in the system compared to a non-amplified system, and up to 2.8 dB improvement over OOK NRZ receiver sensitivity is provided by a DPPM system using integrate and compare circuitry for maximum likelihood detection, and at coding level of two, for minimum bandwidth utilization. Outdoor HFFSO networks using only WDM, and incorporating CDMA with WDM, are also investigated. In the presence of atmospheric scintillations, an OOK system is required (for optimum performance) to continuously adapt its decision threshold to the fluctuating instantaneous irradiance. This challenge is overcome by using the maximum likelihood detection DPPM system, and necessitated the derivation of an interchannel crosstalk model for WDM DPPM systems. It is found that optical scintillation worsens the effect of interchannel crosstalk in outdoor HFFSO WDM systems, and results in error floors particularly in the upstream transmission, which are raised when CDMA is incorporated into the system, because of MAI. In both outdoor HFFSO networks (with WDM only and with WDM incorporating CDMA), the optical amplifier is found necessary in achieving acceptable BER, and with a feeder fibre of 20 km and distributive FSO link length of 1500 m, high speed broadband services can be provided to users at safe transmit power at all turbulence levels in clear air atmosphere

    Optical Communication

    Get PDF
    Optical communication is very much useful in telecommunication systems, data processing and networking. It consists of a transmitter that encodes a message into an optical signal, a channel that carries the signal to its desired destination, and a receiver that reproduces the message from the received optical signal. It presents up to date results on communication systems, along with the explanations of their relevance, from leading researchers in this field. The chapters cover general concepts of optical communication, components, systems, networks, signal processing and MIMO systems. In recent years, optical components and other enhanced signal processing functions are also considered in depth for optical communications systems. The researcher has also concentrated on optical devices, networking, signal processing, and MIMO systems and other enhanced functions for optical communication. This book is targeted at research, development and design engineers from the teams in manufacturing industry, academia and telecommunication industries
    corecore