1,203 research outputs found

    Error in Enumerable Sequence Prediction

    Get PDF
    We outline a method for quantifying the error of a sequence prediction. With sequence predictions represented by semimeasures u(x) u(x) we define their error to be −log2u(x)-log_2 u(x). We note that enumerable semimeasures are those which model the sequence as the output of a computable system given unknown input. Using this we define the simulation complexity of a computable system CC relative to another UU giving an emph{exact} bound on their difference in error. This error in turn gives an exact upper bound on the number of predictions u u gets incorrect

    Algorithmic Complexity Bounds on Future Prediction Errors

    Get PDF
    We bound the future loss when predicting any (computably) stochastic sequence online. Solomonoff finitely bounded the total deviation of his universal predictor MM from the true distribution mumu by the algorithmic complexity of mumu. Here we assume we are at a time t>1t>1 and already observed x=x1...xtx=x_1...x_t. We bound the future prediction performance on xt+1xt+2...x_{t+1}x_{t+2}... by a new variant of algorithmic complexity of mumu given xx, plus the complexity of the randomness deficiency of xx. The new complexity is monotone in its condition in the sense that this complexity can only decrease if the condition is prolonged. We also briefly discuss potential generalizations to Bayesian model classes and to classification problems.Comment: 21 page

    Optimality of Universal Bayesian Sequence Prediction for General Loss and Alphabet

    Full text link
    Various optimality properties of universal sequence predictors based on Bayes-mixtures in general, and Solomonoff's prediction scheme in particular, will be studied. The probability of observing xtx_t at time tt, given past observations x1...xt−1x_1...x_{t-1} can be computed with the chain rule if the true generating distribution μ\mu of the sequences x1x2x3...x_1x_2x_3... is known. If μ\mu is unknown, but known to belong to a countable or continuous class \M one can base ones prediction on the Bayes-mixture ξ\xi defined as a wνw_\nu-weighted sum or integral of distributions \nu\in\M. The cumulative expected loss of the Bayes-optimal universal prediction scheme based on ξ\xi is shown to be close to the loss of the Bayes-optimal, but infeasible prediction scheme based on μ\mu. We show that the bounds are tight and that no other predictor can lead to significantly smaller bounds. Furthermore, for various performance measures, we show Pareto-optimality of ξ\xi and give an Occam's razor argument that the choice wν∼2−K(ν)w_\nu\sim 2^{-K(\nu)} for the weights is optimal, where K(ν)K(\nu) is the length of the shortest program describing ν\nu. The results are applied to games of chance, defined as a sequence of bets, observations, and rewards. The prediction schemes (and bounds) are compared to the popular predictors based on expert advice. Extensions to infinite alphabets, partial, delayed and probabilistic prediction, classification, and more active systems are briefly discussed.Comment: 34 page

    Sequential Predictions based on Algorithmic Complexity

    Get PDF
    This paper studies sequence prediction based on the monotone Kolmogorov complexity Km=-log m, i.e. based on universal deterministic/one-part MDL. m is extremely close to Solomonoff's universal prior M, the latter being an excellent predictor in deterministic as well as probabilistic environments, where performance is measured in terms of convergence of posteriors or losses. Despite this closeness to M, it is difficult to assess the prediction quality of m, since little is known about the closeness of their posteriors, which are the important quantities for prediction. We show that for deterministic computable environments, the "posterior" and losses of m converge, but rapid convergence could only be shown on-sequence; the off-sequence convergence can be slow. In probabilistic environments, neither the posterior nor the losses converge, in general.Comment: 26 pages, LaTe

    On Universal Prediction and Bayesian Confirmation

    Get PDF
    The Bayesian framework is a well-studied and successful framework for inductive reasoning, which includes hypothesis testing and confirmation, parameter estimation, sequence prediction, classification, and regression. But standard statistical guidelines for choosing the model class and prior are not always available or fail, in particular in complex situations. Solomonoff completed the Bayesian framework by providing a rigorous, unique, formal, and universal choice for the model class and the prior. We discuss in breadth how and in which sense universal (non-i.i.d.) sequence prediction solves various (philosophical) problems of traditional Bayesian sequence prediction. We show that Solomonoff's model possesses many desirable properties: Strong total and weak instantaneous bounds, and in contrast to most classical continuous prior densities has no zero p(oste)rior problem, i.e. can confirm universal hypotheses, is reparametrization and regrouping invariant, and avoids the old-evidence and updating problem. It even performs well (actually better) in non-computable environments.Comment: 24 page

    Minimum Description Length Induction, Bayesianism, and Kolmogorov Complexity

    Get PDF
    The relationship between the Bayesian approach and the minimum description length approach is established. We sharpen and clarify the general modeling principles MDL and MML, abstracted as the ideal MDL principle and defined from Bayes's rule by means of Kolmogorov complexity. The basic condition under which the ideal principle should be applied is encapsulated as the Fundamental Inequality, which in broad terms states that the principle is valid when the data are random, relative to every contemplated hypothesis and also these hypotheses are random relative to the (universal) prior. Basically, the ideal principle states that the prior probability associated with the hypothesis should be given by the algorithmic universal probability, and the sum of the log universal probability of the model plus the log of the probability of the data given the model should be minimized. If we restrict the model class to the finite sets then application of the ideal principle turns into Kolmogorov's minimal sufficient statistic. In general we show that data compression is almost always the best strategy, both in hypothesis identification and prediction.Comment: 35 pages, Latex. Submitted IEEE Trans. Inform. Theor

    Towards a Universal Theory of Artificial Intelligence based on Algorithmic Probability and Sequential Decision Theory

    Get PDF
    Decision theory formally solves the problem of rational agents in uncertain worlds if the true environmental probability distribution is known. Solomonoff's theory of universal induction formally solves the problem of sequence prediction for unknown distribution. We unify both theories and give strong arguments that the resulting universal AIXI model behaves optimal in any computable environment. The major drawback of the AIXI model is that it is uncomputable. To overcome this problem, we construct a modified algorithm AIXI^tl, which is still superior to any other time t and space l bounded agent. The computation time of AIXI^tl is of the order t x 2^l.Comment: 8 two-column pages, latex2e, 1 figure, submitted to ijca

    On Generalized Computable Universal Priors and their Convergence

    Full text link
    Solomonoff unified Occam's razor and Epicurus' principle of multiple explanations to one elegant, formal, universal theory of inductive inference, which initiated the field of algorithmic information theory. His central result is that the posterior of the universal semimeasure M converges rapidly to the true sequence generating posterior mu, if the latter is computable. Hence, M is eligible as a universal predictor in case of unknown mu. The first part of the paper investigates the existence and convergence of computable universal (semi)measures for a hierarchy of computability classes: recursive, estimable, enumerable, and approximable. For instance, M is known to be enumerable, but not estimable, and to dominate all enumerable semimeasures. We present proofs for discrete and continuous semimeasures. The second part investigates more closely the types of convergence, possibly implied by universality: in difference and in ratio, with probability 1, in mean sum, and for Martin-Loef random sequences. We introduce a generalized concept of randomness for individual sequences and use it to exhibit difficulties regarding these issues. In particular, we show that convergence fails (holds) on generalized-random sequences in gappy (dense) Bernoulli classes.Comment: 22 page
    • …
    corecore