14 research outputs found

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    The Estimation Methods for an Integrated INS/GPS UXO Geolocation System

    Get PDF
    This work was supported by a project funded by the US Army Corps of Engineers, Strategic Environment Research and Development Program, contract number W912HQ- 08-C-0044.This report was also submitted to the Graduate School of the Ohio State University in partial fulfillment of the PhD degree in Geodetic Science.Unexploded ordnance (UXO) is the explosive weapons such as mines, bombs, bullets, shells and grenades that failed to explode when they were employed. In North America, especially in the US, the UXO is the result of weapon system testing and troop training by the DOD. The traditional UXO detection method employs metal detectors which measure distorted signals of local magnetic fields. Based on detected magnetic signals, holes are dug to remove buried UXO. However, the detection and remediation of UXO contaminated sites using the traditional methods are extremely inefficient in that it is difficult to distinguish the buried UXO from the noise of geologic magnetic sources or anthropic clutter items. The reliable discrimination performance of UXO detection system depends on the employed sensor technology as well as on the data processing methods that invert the collected data to infer the UXO. The detection systems require very accurate positioning (or geolocation) of the detection units to detect and discriminate the candidate UXO from the non-hazardous clutter, greater position and orientation precision because the inversion of magnetic or EMI data relies on their precise relative locations, orientation, and depth. The requirements of position accuracy for MEC geolocation and characterization using typical state-of-the-art detection instrumentation are classified according to levels of accuracy outlined in: the screening level with position tolerance of 0.5 m (as standard deviation), area mapping (less than 0.05 m), and characterize and discriminate level of accuracy (less than 0.02m). The primary geolocation system is considered as a dual-frequency GPS integrated with a three dimensional inertial measurement unit (IMU); INS/GPS system. Selecting the appropriate estimation method has been the key problem to obtain highly precise geolocation of INS/GPS system for the UXO detection performance in dynamic environments. For this purpose, the Extended Kalman Filter (EKF) has been used as the conventional algorithm for the optimal integration of INS/GPS system. However, the newly introduced non-linear based filters can deal with the non-linear nature of the positioning dynamics as well as the non-Gaussian statistics for the instrument errors, and the non-linear based estimation methods (filtering/smoothing) have been developed and proposed. Therefore, this study focused on the optimal estimation methods for the highly precise geolocation of INS/GPS system using simulations and analyses of two Laboratory tests (cart-based and handheld geolocation system). First, the non-linear based filters (UKF and UKF) have been shown to yield superior performance than the EKF in various specific simulation tests which are designed similar to the UXO geolocation environment (highly dynamic and small area). The UKF yields 50% improvement in the position accuracy over the EKF particularly in the curved sections (medium-grade IMUs case). The UKF also performed significantly better than EKF and shows comparable improvement over the UKF when the IMU noise probability iii density function is symmetric and non-symmetric. Also, since the UXO detection survey does not require the real-time operations, each of the developed filters was modified to accommodate the standard Rauch-Tung-Striebel (RTS) smoothing algorithms. The smoothing methods are applied to the typical UXO detection trajectory; the position error was reduced significantly using a minimal number of control points. Finally, these simulation tests confirmed that tactical-grade IMUs (e.g. HG1700 or HG1900) are required to bridge gaps of high-accuracy ranging solution systems longer than 1 second. Second, these result of the simulation tests were validated from the laboratory tests using navigation-grade and medium-grade accuracy IMUs. To overcome inaccurate a priori knowledge of process noise of the system, the adaptive filtering methods have been applied to the EKF and UKF and they are called the AEKS and AUKS. The neural network aided adaptive nonlinear filtering/smoothing methods (NN-EKS and NN-UKS) which are augmented with RTS smoothing method were compared with the AEKS and AUKS. Each neural network-aided, adaptive filter/smoother improved the position accuracy in both straight and curved sections. The navigation grade IMU (H764G) can achieve the area mapping level of accuracy when the gap of control points is about 8 seconds. The medium grade IMUs (HG1700 and HG1900) with NN-AUKS can maintain less than 10cm under the same conditions as above. Also, the neural network aiding can decrease the difference of position error between the straight and the curved section. Third, in the previous simulation test, the UPF performed better than the other filters. However since the UPF needs a large number of samples to represent the a posteriori statistics in high-dimensional space, the RBPF can be used as an alternative to avoid the inefficiency of particle filter. The RBPF is tailored to precise geolocation for UXO detection using IMU/GPS system and yielded improved estimation results with a small number of samples. The handheld geolocation system using HG1900 with a nonlinear filter-based smoother can achieve the discrimination level of accuracy if the update rate of control points is less than 0.5Hz and 1Hz for the sweep and swing respectively. Also, the sweep operation is more preferred than the swing motion because the position accuracy of the sweep test was better than that of the swing test

    On-board Obstacle Avoidance in the Teleoperation of Unmanned Aerial Vehicles

    Get PDF
    Teleoperation von Drohnen in Umgebungen ohne GPS-Verbindung und wenig Bewegungsspielraum stellt den Operator vor besondere Herausforderungen. Hindernisse in einer unbekannten Umgebung erfordern eine zuverlässige Zustandsschätzung und Algorithmen zur Vermeidung von Kollisionen. In dieser Dissertation präsentieren wir ein System zur kollisionsfreien Navigation einer ferngesteuerten Drohne mit vier Propellern (Quadcopter) in abgeschlossenen Räumen. Die Plattform ist mit einem Miniaturcomputer und dem Minimum an Sensoren ausgestattet. Diese Ausstattung genügt den Anforderungen an die Rechenleistung. Dieses Setup ermöglicht des Weiteren eine hochgenaue Zustandsschätzung mit Hilfe einer Kaskaden-Architektur, sehr gutes Folgeverhalten bezüglich der kommandierten Geschwindigkeit, sowie eine kollisionsfreie Navigation. Ein Komplementärfilter berechnet die Höhe der Drohne, während ein Kalman-Filter Beschleunigung durch eine IMU und Messungen eines Optical-Flow Sensors fusioniert und in die Softwarearchitektur integriert. Eine RGB-D Kamera stellt dem Operator ein visuelles Feedback, sowie Distanzmessungen zur Verfügung, um ein Roboter-zentriertes Modell umliegender Hindernisse mit Hilfe eines Bin-Occupancy-Filters zu erstellen. Der Algorithmus speichert die Position dieser Hindernisse, auch wenn sie das Sehfeld des Sensors verlassen, mit Hilfe des geschätzten Zustandes des Roboters. Das Prinzip des Ausweich-Algorithmus basiert auf dem Ansatz einer modell-prädiktiven Regelung. Durch Vorhersage der wahrscheinlichen Position eines Hindernisses werden die durch den Operator kommandierten Sollwerte gefiltert, um eine mögliche Kollision mit einem Hindernis zu vermeiden. Die Plattform wurde experimentell sowohl in einer räumlich abgeschlossenen Umgebung mit zahlreichen Hindernissen als auch bei Testflügen in offener Umgebung mit natürlichen Hindernissen wie z.B. Bäume getestet. Fliegende Roboter bergen das Risiko, im Fall eines Fehlers, sei es ein Bedienungs- oder Berechnungsfehler, durch einen Aufprall am Boden oder an Hindernissen Schaden zu nehmen. Aus diesem Grund nimmt die Entwicklung von Algorithmen dieser Roboter ein hohes Maß an Zeit und Ressourcen in Anspruch. In dieser Arbeit präsentieren wir zwei Methoden (Software-in-the-loop- und Hardware-in-the-loop-Simulation) um den Entwicklungsprozess zu vereinfachen. Via Software-in-the-loop-Simulation konnte der Zustandsschätzer mit Hilfe simulierter Sensoren und zuvor aufgenommener Datensätze verbessert werden. Eine Hardware-in-the-loop Simulation ermöglichte uns, den Roboter in Gazebo (ein bekannter frei verfügbarer ROS-Simulator) mit zusätzlicher auf dem Roboter installierter Hardware in Simulation zu bewegen. Ebenso können wir damit die Echtzeitfähigkeit der Algorithmen direkt auf der Hardware validieren und verifizieren. Zu guter Letzt analysierten wir den Einfluss der Roboterbewegung auf das visuelle Feedback des Operators. Obwohl einige Drohnen die Möglichkeit einer mechanischen Stabilisierung der Kamera besitzen, können unsere Drohnen aufgrund von Gewichtsbeschränkungen nicht auf diese Unterstützung zurückgreifen. Eine Fixierung der Kamera verursacht, während der Roboter sich bewegt, oft unstetige Bewegungen des Bildes und beeinträchtigt damit negativ die Manövrierbarkeit des Roboters. Viele wissenschaftliche Arbeiten beschäftigen sich mit der Lösung dieses Problems durch Feature-Tracking. Damit kann die Bewegung der Kamera rekonstruiert und das Videosignal stabilisiert werden. Wir zeigen, dass diese Methode stark vereinfacht werden kann, durch die Verwendung der Roboter-internen IMU. Unsere Ergebnisse belegen, dass unser Algorithmus das Kamerabild erfolgreich stabilisieren und der rechnerische Aufwand deutlich reduziert werden kann. Ebenso präsentieren wir ein neues Design eines Quadcopters, um dessen Ausrichtung von der lateralen Bewegung zu entkoppeln. Unser Konzept erlaubt die Neigung der Propellerblätter unabhängig von der Ausrichtung des Roboters mit Hilfe zweier zusätzlicher Aktuatoren. Nachdem wir das dynamische Modell dieses Systems hergeleitet haben, synthetisierten wir einen auf Feedback-Linearisierung basierten Regler. Simulationen bestätigen unsere Überlegungen und heben die Verbesserung der Manövrierfähigkeit dieses neuartigen Designs hervor.The teleoperation of unmanned aerial vehicles (UAVs), especially in cramped, GPS-restricted, environments, poses many challenges. The presence of obstacles in an unfamiliar environment requires reliable state estimation and active algorithms to prevent collisions. In this dissertation, we present a collision-free indoor navigation system for a teleoperated quadrotor UAV. The platform is equipped with an on-board miniature computer and a minimal set of sensors for this task and is self-sufficient with respect to external tracking systems and computation. The platform is capable of highly accurate state-estimation, tracking of the velocity commanded by the user and collision-free navigation. The robot estimates its state in a cascade architecture. The attitude of the platform is calculated with a complementary filter and its linear velocity through a Kalman filter integration of inertial and optical flow measurements. An RGB-D camera serves the purpose of providing visual feedback to the operator and depth measurements to build a probabilistic, robot-centric obstacle state with a bin-occupancy filter. The algorithm tracks the obstacles when they leave the field of view of the sensor by updating their positions with the estimate of the robot's motion. The avoidance part of our navigation system is based on the Model Predictive Control approach. By predicting the possible future obstacles states, the UAV filters the operator commands by altering them to prevent collisions. Experiments in obstacle-rich indoor and outdoor environments validate the efficiency of the proposed setup. Flying robots are highly prone to damage in cases of control errors, as these most likely will cause them to fall to the ground. Therefore, the development of algorithm for UAVs entails considerable amount of time and resources. In this dissertation we present two simulation methods, i.e. software- and hardware-in-the-loop simulations, to facilitate this process. The software-in-the-loop testing was used for the development and tuning of the state estimator for our robot using both the simulated sensors and pre-recorded datasets of sensor measurements, e.g., from real robotic experiments. With hardware-in-the-loop simulations, we are able to command the robot simulated in Gazebo, a popular open source ROS-enabled physical simulator, using computational units that are embedded on our quadrotor UAVs. Hence, we can test in simulation not only the correct execution of algorithms, but also the computational feasibility directly on the robot's hardware. Lastly, we analyze the influence of the robot's motion on the visual feedback provided to the operator. While some UAVs have the capacity to carry mechanically stabilized camera equipment, weight limits or other problems may make mechanical stabilization impractical. With a fixed camera, the video stream is often unsteady due to the multirotor's movement and can impair the operator's situation awareness. There has been significant research on how to stabilize videos using feature tracking to determine camera movement, which in turn is used to manipulate frames and stabilize the camera stream. However, we believe that this process could be greatly simplified by using data from a UAV’s on-board inertial measurement unit to stabilize the camera feed. Our results show that our algorithm successfully stabilizes the camera stream with the added benefit of requiring less computational power. We also propose a novel quadrotor design concept to decouple its orientation from the lateral motion of the quadrotor. In our design the tilt angles of the propellers with respect to the quadrotor body are being simultaneously controlled with two additional actuators by employing the parallelogram principle. After deriving the dynamic model of this design, we propose a controller for this platform based on feedback linearization. Simulation results confirm our theoretical findings, highlighting the improved motion capabilities of this novel design with respect to standard quadrotors

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Data bases and data base systems related to NASA's aerospace program. A bibliography with indexes

    Get PDF
    This bibliography lists 1778 reports, articles, and other documents introduced into the NASA scientific and technical information system, 1975 through 1980

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications

    Error Growth Due to Noise During Occlusions in Inertially-Aided Tracking Systems

    No full text
    International audienceWe present an analysis of the error growth in inertial tracking due to sensor noise. This analysis focuses on a problem arising in tracking systems with both optical and inertial sensors. Optical sensors always need a line-of-sight, and a natural idea is to continue tracking using only inertial sensors during an occlusion when the line-of-sight is lost. Several error sources are present in inertial tracking; here we consider the error due to sensor noise which cannot be compensated and is present even if the setup is perfectly calibrated and initialized. The result of this analysis is a mathematical expression for the expected error as a function of time and provides an answer to the following two questions: Depending on the precision needed and the inertial sensors employed, for how long is purely inertial tracking possible? Which sensor characteristics have to be improved to decrease the tracking error
    corecore