853 research outputs found

    On a reduced sparsity stabilization of grad-div type for incompressible flow problems

    Get PDF
    We introduce a new operator for stabilizing error that arises from the weak enforcement of mass conservation in finite element simulations of incompressible flow problems. We show this new operator has a similar positive effect on velocity error as the well-known and very successful grad-div stabilization operator, but the new operator is more attractive from an implementation standpoint because it yields a sparser block structure matrix. That is, while grad-div produces fully coupled block matrices (i.e. block-full), the matrices arising from the new operator are block-upper triangular in two dimensions, and in three dimensions the 2,1 and 3,1 blocks are empty. Moreover, the diagonal blocks of the new operator's matrices are identical to those of grad-div. We provide error estimates and numerical examples for finite element simulations with the new operator, which reveals the significant improvement in accuracy it can provide. Solutions found using the new operator are also compared to those using usual grad-div stabilization, and in all cases, solutions are found to be very similar

    Numerical analysis of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange-Galerkin method, Part I: A nonlinear scheme

    Get PDF
    We present a nonlinear stabilized Lagrange-Galerkin scheme for the Oseen-type Peterlin viscoelastic model. Our scheme is a combination of the method of characteristics and Brezzi-Pitk\"aranta's stabilization method for the conforming linear elements, which yields an efficient computation with a small number of degrees of freedom. We prove error estimates with the optimal convergence order without any relation between the time increment and the mesh size. The result is valid for both the diffusive and non-diffusive models for the conformation tensor in two space dimensions. We introduce an additional term that yields a suitable structural property and allows us to obtain required energy estimate. The theoretical convergence orders are confirmed by numerical experiments. In a forthcoming paper, Part II, a linear scheme is proposed and the corresponding error estimates are proved in two and three space dimensions for the diffusive model.Comment: See arXiv:1603.01074 for Part II: a linear schem

    Spectral methods for CFD

    Get PDF
    One of the objectives of these notes is to provide a basic introduction to spectral methods with a particular emphasis on applications to computational fluid dynamics. Another objective is to summarize some of the most important developments in spectral methods in the last two years. The fundamentals of spectral methods for simple problems will be covered in depth, and the essential elements of several fluid dynamical applications will be sketched

    Convergence analysis of Euler and BDF2 grad-div stabilization methods for the time-dependent penetrative convection model

    Get PDF
    Based on the grad-div stabilization method, the first-order backward Euler and second-order BDF2 finite element schemes were studied for the approximations of the time-dependent penetrative convection equations. The proposed schemes are both unconditionally stable. We proved the error bounds of the velocity and temperature in which the constants are independent of inverse powers of the viscosity and thermal conductivity coefficients when the Taylor-Hood element and P2 P_2 element are used in finite element discretizations. Finally, numerical experiments with high Reynolds numbers were shown to confirm the theoretical results

    Hyperbolic Conservation Laws

    Get PDF
    [no abstract available
    • …
    corecore