16,405 research outputs found

    Error analysis for filtered back projection reconstructions in Besov spaces

    Full text link
    Filtered back projection (FBP) methods are the most widely used reconstruction algorithms in computerized tomography (CT). The ill-posedness of this inverse problem allows only an approximate reconstruction for given noisy data. Studying the resulting reconstruction error has been a most active field of research in the 1990s and has recently been revived in terms of optimal filter design and estimating the FBP approximation errors in general Sobolev spaces. However, the choice of Sobolev spaces is suboptimal for characterizing typical CT reconstructions. A widely used model are sums of characteristic functions, which are better modelled in terms of Besov spaces Bqα,p(R2)\mathrm{B}^{\alpha,p}_q(\mathbb{R}^2). In particular B1α,1(R2)\mathrm{B}^{\alpha,1}_1(\mathbb{R}^2) with α≈1\alpha \approx 1 is a preferred model in image analysis for describing natural images. In case of noisy Radon data the total FBP reconstruction error ∥f−fLδ∥≤∥f−fL∥+∥fL−fLδ∥\|f-f_L^\delta\| \le \|f-f_L\|+ \|f_L - f_L^\delta\| splits into an approximation error and a data error, where LL serves as regularization parameter. In this paper, we study the approximation error of FBP reconstructions for target functions f∈L1(R2)∩Bqα,p(R2)f \in \mathrm{L}^1(\mathbb{R}^2) \cap \mathrm{B}^{\alpha,p}_q(\mathbb{R}^2) with positive α∉N\alpha \not\in \mathbb{N} and 1≤p,q≤∞1 \leq p,q \leq \infty. We prove that the Lp\mathrm{L}^p-norm of the inherent FBP approximation error f−fLf-f_L can be bounded above by \begin{equation*} \|f - f_L\|_{\mathrm{L}^p(\mathbb{R}^2)} \leq c_{\alpha,q,W} \, L^{-\alpha} \, |f|_{\mathrm{B}^{\alpha,p}_q(\mathbb{R}^2)} \end{equation*} under suitable assumptions on the utilized low-pass filter's window function WW. This then extends by classical methods to estimates for the total reconstruction error.Comment: 32 pages, 8 figure

    Sufficient Conditions for Feasibility and Optimality of Real-Time Optimization Schemes - II. Implementation Issues

    Get PDF
    The idea of iterative process optimization based on collected output measurements, or "real-time optimization" (RTO), has gained much prominence in recent decades, with many RTO algorithms being proposed, researched, and developed. While the essential goal of these schemes is to drive the process to its true optimal conditions without violating any safety-critical, or "hard", constraints, no generalized, unified approach for guaranteeing this behavior exists. In this two-part paper, we propose an implementable set of conditions that can enforce these properties for any RTO algorithm. This second part examines the practical side of the sufficient conditions for feasibility and optimality (SCFO) proposed in the first and focuses on how they may be enforced in real application, where much of the knowledge required for the conceptual SCFO is unavailable. Methods for improving convergence speed are also considered.Comment: 56 pages, 15 figure

    Potential Output Estimations for Hungary: A Survey of Different Approaches

    Get PDF
    This paper is a comprehensive analysis of Hungary’s potential output. Since the concept of potential output is not unique, we present various interpretations of potential GDP, along with a large set of techniques for estimating it. Various estimates are presented and robustness analyses are performed. Finally, an illustrative scenario is outlined for the forthcoming few years.potential output, output gap, production function, business cycle, filtering.

    TheanoLM - An Extensible Toolkit for Neural Network Language Modeling

    Full text link
    We present a new tool for training neural network language models (NNLMs), scoring sentences, and generating text. The tool has been written using Python library Theano, which allows researcher to easily extend it and tune any aspect of the training process. Regardless of the flexibility, Theano is able to generate extremely fast native code that can utilize a GPU or multiple CPU cores in order to parallelize the heavy numerical computations. The tool has been evaluated in difficult Finnish and English conversational speech recognition tasks, and significant improvement was obtained over our best back-off n-gram models. The results that we obtained in the Finnish task were compared to those from existing RNNLM and RWTHLM toolkits, and found to be as good or better, while training times were an order of magnitude shorter

    Numerical methods for coupled reconstruction and registration in digital breast tomosynthesis.

    Get PDF
    Digital Breast Tomosynthesis (DBT) provides an insight into the fine details of normal fibroglandular tissues and abnormal lesions by reconstructing a pseudo-3D image of the breast. In this respect, DBT overcomes a major limitation of conventional X-ray mam- mography by reducing the confounding effects caused by the superposition of breast tissue. In a breast cancer screening or diagnostic context, a radiologist is interested in detecting change, which might be indicative of malignant disease. To help automate this task image registration is required to establish spatial correspondence between time points. Typically, images, such as MRI or CT, are first reconstructed and then registered. This approach can be effective if reconstructing using a complete set of data. However, for ill-posed, limited-angle problems such as DBT, estimating the deformation is com- plicated by the significant artefacts associated with the reconstruction, leading to severe inaccuracies in the registration. This paper presents a mathematical framework, which couples the two tasks and jointly estimates both image intensities and the parameters of a transformation. Under this framework, we compare an iterative method and a simultaneous method, both of which tackle the problem of comparing DBT data by combining reconstruction of a pair of temporal volumes with their registration. We evaluate our methods using various computational digital phantoms, uncom- pressed breast MR images, and in-vivo DBT simulations. Firstly, we compare both iter- ative and simultaneous methods to the conventional, sequential method using an affine transformation model. We show that jointly estimating image intensities and parametric transformations gives superior results with respect to reconstruction fidelity and regis- tration accuracy. Also, we incorporate a non-rigid B-spline transformation model into our simultaneous method. The results demonstrate a visually plausible recovery of the deformation with preservation of the reconstruction fidelity
    • …
    corecore