97 research outputs found

    A Simplified Pavement Condition Assessment and its Integration to a Pavement Management System

    Get PDF
    abstract: Road networks are valuable assets that deteriorate over time and need to be preserved to an acceptable service level. Pavement management systems and pavement condition assessment have been implemented widely to routinely evaluate the condition of the road network, and to make recommendations for maintenance and rehabilitation in due time and manner. The problem with current practices is that pavement evaluation requires qualified raters to carry out manual pavement condition surveys, which can be labor intensive and time consuming. Advances in computing capabilities, image processing and sensing technologies has permitted the development of vehicles equipped with such technologies to assess pavement condition. The problem with this is that the equipment is costly, and not all agencies can afford to purchase it. Recent researchers have developed smartphone applications to address this data collection problem, but only works in a restricted set up, or calibration is recommended. This dissertation developed a simple method to continually and accurately quantify pavement condition of an entire road network by using technologies already embedded in new cars, smart phones, and by randomly collecting data from a population of road users. The method includes the development of a Ride Quality Index (RQI), and a methodology for analyzing the data from multi-factor uncertainty. It also derived a methodology to use the collected data through smartphone sensing into a pavement management system. The proposed methodology was validated with field studies, and the use of Monte Carlo method to estimate RQI from different longitudinal profiles. The study suggested RQI thresholds for different road settings, and a minimum samples required for the analysis. The implementation of this approach could help agencies to continually monitor the road network condition at a minimal cost, thus saving millions of dollars compared to traditional condition surveys. This approach also has the potential to reliably assess pavement ride quality for very large networks in matter of days.Dissertation/ThesisDoctoral Dissertation Civil, Environmental and Sustainable Engineering 201

    DragonflEYE: a passive approach to aerial collision sensing

    Get PDF
    "This dissertation describes the design, development and test of a passive wide-field optical aircraft collision sensing instrument titled 'DragonflEYE'. Such a ""sense-and-avoid"" instrument is desired for autonomous unmanned aerial systems operating in civilian airspace. The instrument was configured as a network of smart camera nodes and implemented using commercial, off-the-shelf components. An end-to-end imaging train model was developed and important figures of merit were derived. Transfer functions arising from intermediate mediums were discussed and their impact assessed. Multiple prototypes were developed. The expected performance of the instrument was iteratively evaluated on the prototypes, beginning with modeling activities followed by laboratory tests, ground tests and flight tests. A prototype was mounted on a Bell 205 helicopter for flight tests, with a Bell 206 helicopter acting as the target. Raw imagery was recorded alongside ancillary aircraft data, and stored for the offline assessment of performance. The ""range at first detection"" (R0), is presented as a robust measure of sensor performance, based on a suitably defined signal-to-noise ratio. The analysis treats target radiance fluctuations, ground clutter, atmospheric effects, platform motion and random noise elements. Under the measurement conditions, R0 exceeded flight crew acquisition ranges. Secondary figures of merit are also discussed, including time to impact, target size and growth, and the impact of resolution on detection range. The hardware was structured to facilitate a real-time hierarchical image-processing pipeline, with selected image processing techniques introduced. In particular, the height of an observed event above the horizon compensates for angular motion of the helicopter platform.

    Mobile 3D Visualization Techniques in Field Geology Education

    Get PDF
    Despite the fact that we are in the mobile computing age, student geologists still carry out geological fieldwork using centuries old tools and techniques. This thesis investigates the question “how can 3D visualization on smartphones and tablets help students learn during geological fieldwork?” To answer this question, the thesis first reviews the types of difficulty encountered by novice geologists, narrowing it down to one particular issue: the extrapolation of 2D geological features into the 3D real world. The tasks carried out by novice geologists during introductory fieldwork were analysed systemically. This thesis then explored how apps from Android and iOS app stores may be used in the field to carry out such tasks. The overall finding is that there is limited work focused on novice geologists' difficulties during fieldwork, particularly 2D to 3D extrapolation. Then, using a perception test, the options of representing a single strike and dip measurement in a 3D environment is explored. The results of the test was that there were more accurate methods to represent a measurement than a traditional symbol (e.g. a T-shape). Then, a hypothesis was evaluated which states that instead of using 2D geological maps alone, a 3D visualization of strike and dip measurements plotted on them can assist students in understanding geological structures. The thesis then outlines functionality of a prototype that can be used by higher education institutions as a foundation for a novice geologists' field app. Key findings of the present work are: there has been no apps developed with focus on issues faced by novice geologists doing fieldwork during the time of this study. There was only British Geological Survey's iGeology3D which was released at the time of the study which focused on 3D visualization of geological data to be used in the field. In a separate study an iPad2 was found to be accurate enough for taking strike and dip measurements. In a perception experiment a 3D visualization of strike and dip was deemed to be better for comprehending structural orientation of outcrops but found to be no better than other 2D shapes. Finally, an experiment comparing the use of 2D maps versus 2D maps overlaid with 3D visualization of structural data, the latter found to be more effective for structural interpretation by novice geologists

    Proprioceptive Localization for Robots

    Get PDF
    Localization is a critical navigation function for mobile robots. Most localization methods employ a global position system (GPS), a lidar, and a camera which are exteroceptive sensors relying on the perception and recognition of landmarks in the environment. However, GPS signals may be unavailable because high-rise buildings may block GPS signals in urban areas. Poor weather and lighting conditions may challenge all exteroceptive sensors. In this dissertation, we focus on proprioceptive localization (PL) methods which refer to a new class of robot egocentric localization methods that do not rely on the perception and recognition of external landmarks. These methods depend on a prior map and proprioceptive sensors such as inertial measurement units (IMUs) and/or wheel encoders which are naturally immune to aforementioned adversary environmental conditions that may hinder exteroceptive sensors. PL is intended to be a low-cost and fallback solution when everything else fails. We first propose a method named proprioceptive localization assisted by magnetoreception (PLAM). PLAM employs a gyroscope and a compass to sense heading changes and matches the heading sequence with a pre-processed heading graph to localize the robot. Not all cases can be successful because degenerated maps may consist of rectangular grid-like streets and the robot may travel in a loop. To analyze these, we use information entropy to model map characteristics and perform both simulation and experiments to find out typical heading and information entropy requirements for localization. We further propose a method which allows continuous localization and is less limited by map degeneracy. Assisted by magnetoreception, we use IMUs and wheel encoders to estimate vehicle trajectory which is used to query a prior known map to obtain location. We named the proposed method as graph-based proprioceptive localization (GBPL). As a robot travels, we extract a sequence of heading-length values for straight segments from the trajectory and match the sequence with a pre-processed heading-length graph (HLG) abstracted from the prior known map to localize the robot under a graph-matching approach. Using HLG information, our location alignment and verification module compensates for trajectory drift, wheel slip, or tire inflation level. %The algorithm runs successfully in finding robot location continuously and achieves localization accuracy at the level that the prior map allows (less than 10m). With the development of communication technology, it becomes possible to leverage vehicle-to-vehicle (V2V) communication to develop a multiple vehicle/robot collaborative localization scheme. Named as collaborative graph-based proprioceptive localization (C-GBPL), we extract heading-length sequence from the trajectory as features. When rendezvousing with other vehicles, the ego vehicle aggregates the features from others and forms a merged query graph. We match the query graph with the HLG to localize the vehicle under a graph-to-graph matching approach. The C-GBPL algorithm significantly outperforms its single-vehicle counterpart in localization speed and robustness to trajectory and map degeneracy. Besides, we propose a PL method with WiFi in the indoor environment targeted at handling inconsistent access points (APs). We develop a windowed majority voting and statistical hypothesis testing-based approach to remove APs with large displacements between reference and query data sets. We refine the localization by applying maximum likelihood estimation method to the closed-form posterior location distribution over the filtered signal strength and AP sets in the time window. Our method achieves a mean localization error of less than 3.7 meters even when 70% of APs are inconsistent

    Proceedings of the 20th International Conference on Multimedia in Physics Teaching and Learning

    Get PDF

    Proceedings of the 20th International Conference on Multimedia in Physics Teaching and Learning

    Get PDF

    Advanced Location-Based Technologies and Services

    Get PDF
    Since the publication of the first edition in 2004, advances in mobile devices, positioning sensors, WiFi fingerprinting, and wireless communications, among others, have paved the way for developing new and advanced location-based services (LBSs). This second edition provides up-to-date information on LBSs, including WiFi fingerprinting, mobile computing, geospatial clouds, geospatial data mining, location privacy, and location-based social networking. It also includes new chapters on application areas such as LBSs for public health, indoor navigation, and advertising. In addition, the chapter on remote sensing has been revised to address advancements
    corecore