446 research outputs found

    Single-Event Upset Analysis and Protection in High Speed Circuits

    Get PDF
    The effect of single-event transients (SETs) (at a combinational node of a design) on the system reliability is becoming a big concern for ICs manufactured using advanced technologies. An SET at a node of combinational part may cause a transient pulse at the input of a flip-flop and consequently is latched in the flip-flop and generates a soft-error. When an SET conjoined with a transition at a node along a critical path of the combinational part of a design, a transient delay fault may occur at the input of a flip-flop. On the other hand, increasing pipeline depth and using low power techniques such as multi-level power supply, and multi-threshold transistor convert almost all paths in a circuit to critical ones. Thus, studying the behavior of the SET in these kinds of circuits needs special attention. This paper studies the dynamic behavior of a circuit with massive critical paths in the presence of an SET. We also propose a novel flip-flop architecture to mitigate the effects of such SETs in combinational circuits. Furthermore, the proposed architecture can tolerant a single event upset (SEU) caused by particle strike on the internal nodes of a flip-flo

    The Effectiveness of TAG or Guard-Gates in SET Suppression Using Delay and Dual-Rail Configurations at 0.35 microns

    Get PDF
    Design options for decreasing the susceptibility of integrated circuits to Single Event Upset (SEU) fall into two categories: (1) increasing the critical charge to cause an upset at a particular node, and (2) employing redundancy to mask or correct errors. With decreasing device sizes on an Integrated Circuit (IC), the amount of charge required to represent a logic state has steadily reduced. Critical charge methods such as increasing drive strength or increasing the time required to change state as in capacitive or resistive hardening or delay based approaches extract a steadily increasing penalty as a percentage of device resources and performance. Dual redundancy is commonly assumed only to provide error detection with Triple Modular Redundancy (TMR) required for correction, but less well known methods employ dual redundancy to achieve full error correction by voting two inputs with a prior state to resolve ambiguity. This requires special circuits such as the Whitaker latch [1], or the guard-gate [2] which some of us have called a Transition AND Gate (TAG) [3]. A 2-input guard gate is shown in Figure 1. It is similar to a Muller Completion Element [4] and relies on capacitance at node "out" to retain the prior state when inputs disagree, while eliminating any output buffer which would be susceptible to radiation strikes. This paper experimentally compares delay based and dual rail flip-flop designs wherein both types of circuits employ guard-gates to optimize layout and performance, and draws conclusions about design criteria and suitability of each option. In both cases a design goal is protection against Single Event Transients (SET) in combinational logic as well as SEU in the storage elements. For the delay based design, it is also a goal to allow asynchronous clear or preset inputs on the storage elements, which are often not available in radiation tolerant designs

    Fault Tolerant Techniques for Spacecraft Data Recorders

    Get PDF
    This paper presents the techniques for improving system reliability which SEAKR Engineering employs in the design of their spacecraft solid state data recorders. Briefly, these techniques include Hamming code error correction, periodic memory scrubbing, latch-up protection, excessive capacity, redundant power supplies/control/bus circuits, microcode protection, and shielding

    Design Solutions For Modular Satellite Architectures

    Get PDF
    The cost-effective access to space envisaged by ESA would open a wide range of new opportunities and markets, but is still many years ahead. There is still a lack of devices, circuits, systems which make possible to develop satellites, ground stations and related services at costs compatible with the budget of academic institutions and small and medium enterprises (SMEs). As soon as the development time and cost of small satellites will fall below a certain threshold (e.g. 100,000 to 500,000 €), appropriate business models will likely develop to ensure a cost-effective and pervasive access to space, and related infrastructures and services. These considerations spurred the activity described in this paper, which is aimed at: - proving the feasibility of low-cost satellites using COTS (Commercial Off The Shelf) devices. This is a new trend in the space industry, which is not yet fully exploited due to the belief that COTS devices are not reliable enough for this kind of applications; - developing a flight model of a flexible and reliable nano-satellite with less than 25,000€; - training students in the field of avionics space systems: the design here described is developed by a team including undergraduate students working towards their graduation work. The educational aspects include the development of specific new university courses; - developing expertise in the field of low-cost avionic systems, both internally (university staff) and externally (graduated students will bring their expertise in their future work activity); - gather and cluster expertise and resources available inside the university around a common high-tech project; - creating a working group composed of both University and SMEs devoted to the application of commercially available technology to space environment. The first step in this direction was the development of a small low cost nano-satellite, started in the year 2004: the name of this project was PiCPoT (Piccolo Cubo del Politecnico di Torino, Small Cube of Politecnico di Torino). The project was carried out by some departments of the Politecnico, in particular Electronics and Aerospace. The main goal of the project was to evaluate the feasibility of using COTS components in a space project in order to greatly reduce costs; the design exploited internal subsystems modularity to allow reuse and further cost reduction for future missions. Starting from the PiCPoT experience, in 2006 we began a new project called ARaMiS (Speretta et al., 2007) which is the Italian acronym for Modular Architecture for Satellites. This work describes how the architecture of the ARaMiS satellite has been obtained from the lesson learned from our former experience. Moreover we describe satellite operations, giving some details of the major subsystems. This work is composed of two parts. The first one describes the design methodology, solutions and techniques that we used to develop the PiCPoT satellite; it gives an overview of its operations, with some details of the major subsystems. Details on the specifications can also be found in (Del Corso et al., 2007; Passerone et al, 2008). The second part, indeed exploits the experience achieved during the PiCPoT development and describes a proposal for a low-cost modular architecture for satellite

    STUDY OF SINGLE-EVENT EFFECTS ON DIGITAL SYSTEMS

    Get PDF
    Microelectronic devices and systems have been extensively utilized in a variety of radiation environments, ranging from the low-earth orbit to the ground level. A high-energy particle from such an environment may cause voltage/current transients, thereby inducing Single Event Effect (SEE) errors in an Integrated Circuit (IC). Ever since the first SEE error was reported in 1975, this community has made tremendous progress in investigating the mechanisms of SEE and exploring radiation tolerant techniques. However, as the IC technology advances, the existing hardening techniques have been rendered less effective because of the reduced spacing and charge sharing between devices. The Semiconductor Industry Association (SIA) roadmap has identified radiation-induced soft errors as the major threat to the reliable operation of electronic systems in the future. In digital systems, hardening techniques of their core components, such as latches, logic, and clock network, need to be addressed. Two single event tolerant latch designs taking advantage of feedback transistors are presented and evaluated in both single event resilience and overhead. These feedback transistors are turned OFF in the hold mode, thereby yielding a very large resistance. This, in turn, results in a larger feedback delay and higher single event tolerance. On the other hand, these extra transistors are turned ON when the cell is in the write mode. As a result, no significant write delay is introduced. Both designs demonstrate higher upset threshold and lower cross-section when compared to the reference cells. Dynamic logic circuits have intrinsic single event issues in each stage of the operations. The worst case occurs when the output is evaluated logic high, where the pull-up networks are turned OFF. In this case, the circuit fails to recover the output by pulling the output up to the supply rail. A capacitor added to the feedback path increases the node capacitance of the output and the feedback delay, thereby increasing the single event critical charge. Another differential structure that has two differential inputs and outputs eliminates single event upset issues at the expense of an increased number of transistors. Clock networks in advanced technology nodes may cause significant errors in an IC as the devices are more sensitive to single event strikes. Clock mesh is a widely used clocking scheme in a digital system. It was fabricated in a 28nm technology and evaluated through the use of heavy ions and laser irradiation experiments. Superior resistance to radiation strikes was demonstrated during these tests. In addition to mitigating single event issues by using hardened designs, built-in current sensors can be used to detect single event induced currents in the n-well and, if implemented, subsequently execute fault correction actions. These sensors were simulated and fabricated in a 28nm CMOS process. Simulation, as well as, experimental results, substantiates the validity of this sensor design. This manifests itself as an alternative to existing hardening techniques. In conclusion, this work investigates single event effects in digital systems, especially those in deep-submicron or advanced technology nodes. New hardened latch, dynamic logic, clock, and current sensor designs have been presented and evaluated. Through the use of these designs, the single event tolerance of a digital system can be achieved at the expense of varying overhead in terms of area, power, and delay

    Single event upset hardened embedded domain specific reconfigurable architecture

    Get PDF

    A new architecture for single-event upset detection & reconfiguration of SRAM-based FPGAs

    Get PDF
    Field Programmable Gate Arrays (FPGA) are used in a variety of applications, ranging from consumer electronics to devices in spacecrafts because of their flexibility in achieving requirements such as low cost, high performance, and fast turnaround. SRAM-based FPGAs can experience single bit flips in the configuration memory due to high-energy neutrons or alpha particles hitting critical nodes in the SRAM cells, by transferring enough energy to effect the change. High energy particles can be emitted by cosmic radiation or traces of radioactive elements in device packaging. The result of this could range from unwanted functional or data modification, data loss in the system, to damage to the cell where the charged particle makes impact. This phenomenon is known as a Single Event Upset (SEU) and makes fault tolerance a critical requirement in FPGA design. This research proposes a shift in architecture from current SRAM-based FPGAs such as Xilinx Virtex. The proposed architecture includes an inherent SEU detection through parity checking of the configuration memory. The inherent SEU detection sets a syndrome flag when an odd number of bit flips occur within a data frame of the configuration memory. To correct a fault, the FPGA the affected data frame is partially reconfigured. Existing and proposed solutions include: Triple Modular Redundancy (TMR) systems; readback and compare the configuration memory; and periodically reprogramming the entire configuration memory, also known as scrubbing. The advantages afforded by the proposed architecture over existing solutions include: faster error detection and correction latency over the readback method and better area and power overhead over TMR

    Radiation effects in spacecraft electronics

    Get PDF
    Effects on the internal spacecraft electronics due to exposure to the natural and enhanced space radiation environment will be reviewed. The emphasis will be placed on the description of the nature of both the exposure environment and failure mechanisms in semiconductors. Understanding both the system environment and device effects is critical in the use of laboratory simulation environments to obtain the data necessary to design and qualify components for successful application
    corecore