821 research outputs found

    Design and implementation of a modular controller for robotic machines

    Get PDF
    This research focused on the design and implementation of an Intelligent Modular Controller (IMC) architecture designed to be reconfigurable over a robust network. The design incorporates novel communication, hardware, and software architectures. This was motivated by current industrial needs for distributed control systems due to growing demand for less complexity, more processing power, flexibility, and greater fault tolerance. To this end, three main contributions were made. Most distributed control architectures depend on multi-tier heterogeneous communication networks requiring linking devices and/or complex middleware. In this study, first, a communication architecture was proposed and implemented with a homogenous network employing the ubiquitous Ethernet for both real-time and non real-time communication. This was achieved by a producer-consumer coordination model for real-time data communication over a segmented network, and a client-server model for point-to-point transactions. The protocols deployed use a Time-Triggered (TT) approach to schedule real-time tasks on the network. Unlike other TT approaches, the scheduling mechanism does not need to be configured explicitly when controller nodes are added or removed. An implicit clock synchronization technique was also developed to complement the architecture. Second, a reconfigurable mechanism based on an auto-configuration protocol was developed. Modules on the network use this protocol to automatically detect themselves, establish communication, and negotiate for a desired configuration. Third, the research demonstrated hardware/software co-design as a contribution to the growing discipline of mechatronics. The IMC consists of a motion controller board designed and prototyped in-house, and a Java microcontroller. An IMC is mapped to each machine/robot axis, and an additional IMC can be configured to serve as a real-time coordinator. The entire architecture was implemented in Java, thus reinforcing uniformity, simplicity, modularity, and openness. Evaluation results showed the potential of the flexible controller to meet medium to high performance machining requirements

    Memory built-in self-repair and correction for improving yield: a review

    Get PDF
    Nanometer memories are highly prone to defects due to dense structure, necessitating memory built-in self-repair as a must-have feature to improve yield. Today’s system-on-chips contain memories occupying an area as high as 90% of the chip area. Shrinking technology uses stricter design rules for memories, making them more prone to manufacturing defects. Further, using 3D-stacked memories makes the system vulnerable to newer defects such as those coming from through-silicon-vias (TSV) and micro bumps. The increased memory size is also resulting in an increase in soft errors during system operation. Multiple memory repair techniques based on redundancy and correction codes have been presented to recover from such defects and prevent system failures. This paper reviews recently published memory repair methodologies, including various built-in self-repair (BISR) architectures, repair analysis algorithms, in-system repair, and soft repair handling using error correcting codes (ECC). It provides a classification of these techniques based on method and usage. Finally, it reviews evaluation methods used to determine the effectiveness of the repair algorithms. The paper aims to present a survey of these methodologies and prepare a platform for developing repair methods for upcoming-generation memories

    Fault-Tolerant Computing: An Overview

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryNASA / NAG-1-613Semiconductor Research Corporation / 90-DP-109Joint Services Electronics Program / N00014-90-J-127

    Fault-tolerant computer study

    Get PDF
    A set of building block circuits is described which can be used with commercially available microprocessors and memories to implement fault tolerant distributed computer systems. Each building block circuit is intended for VLSI implementation as a single chip. Several building blocks and associated processor and memory chips form a self checking computer module with self contained input output and interfaces to redundant communications buses. Fault tolerance is achieved by connecting self checking computer modules into a redundant network in which backup buses and computer modules are provided to circumvent failures. The requirements and design methodology which led to the definition of the building block circuits are discussed
    • …
    corecore