1,206 research outputs found

    Error resilient image transmission using T-codes and edge-embedding

    Get PDF
    Current image communication applications involve image transmission over noisy channels, where the image gets damaged. The loss of synchronization at the decoder due to these errors increases the damage in the reconstructed image. Our main goal in this research is to develop an algorithm that has the capability to detect errors, achieve synchronization and conceal errors.;In this thesis we studied the performance of T-codes in comparison with Huffman codes. We develop an algorithm for the selection of best T-code set. We have shown that T-codes exhibit better synchronization properties when compared to Huffman Codes. In this work we developed an algorithm that extracts edge patterns from each 8x8 block, classifies edge patterns into different classes. In this research we also propose a novel scrambling algorithm to hide edge pattern of a block into neighboring 8x8 blocks of the image. This scrambled hidden data is used in the detection of errors and concealment of errors. We also develop an algorithm to protect the hidden data from getting damaged in the course of transmission

    Survey of Error Concealment techniques: Research directions and open issues

    Full text link
    © 2015 IEEE. Error Concealment (EC) techniques use either spatial, temporal or a combination of both types of information to recover the data lost in transmitted video. In this paper, existing EC techniques are reviewed, which are divided into three categories, namely Intra-frame EC, Inter-frame EC, and Hybrid EC techniques. We first focus on the EC techniques developed for the H.264/AVC standard. The advantages and disadvantages of these EC techniques are summarized with respect to the features in H.264. Then, the EC algorithms are also analyzed. These EC algorithms have been recently adopted in the newly introduced H.265/HEVC standard. A performance comparison between the classic EC techniques developed for H.264 and H.265 is performed in terms of the average PSNR. Lastly, open issues in the EC domain are addressed for future research consideration

    A support vector machine approach for detection and localization of transmission errors within standard H.263++ decoders

    Get PDF
    Wireless multimedia services are increasingly becoming popular boosting the need for better quality-of-experience (QoE) with minimal costs. The standard codecs employed by these systems remove spatio-temporal redundancies to minimize the bandwidth required. However, this increases the exposure of the system to transmission errors, thus presenting a significant degradation in perceptual quality of the reconstructed video sequences. A number of mechanisms were investigated in the past to make these codecs more robust against transmission errors. Nevertheless, these techniques achieved little success, forcing the transmission to be held at lower bit-error rates (BERs) to guarantee acceptable quality. This paper presents a novel solution to this problem based on the error detection capabilities of the transport protocols to identify potentially corrupted group-of-blocks (GOBs). The algorithm uses a support vector machine (SVM) at its core to localize visually impaired macroblocks (MBs) that require concealment within these GOBs. Hence, this method drastically reduces the region to be concealed compared to state-of-the-art error resilient strategies which assume a packet loss scenario. Testing on a standard H.263++ codec confirms that a significant gain in quality is achieved with error detection rates of 97.8% and peak signal-to-noise ratio (PSNR) gains of up to 5.33 dB. Moreover, most of the undetected errors provide minimal visual artifacts and are thus of little influence to the perceived quality of the reconstructed sequences.peer-reviewe

    Micro protocol engineering for unstructured carriers: On the embedding of steganographic control protocols into audio transmissions

    Full text link
    Network steganography conceals the transfer of sensitive information within unobtrusive data in computer networks. So-called micro protocols are communication protocols placed within the payload of a network steganographic transfer. They enrich this transfer with features such as reliability, dynamic overlay routing, or performance optimization --- just to mention a few. We present different design approaches for the embedding of hidden channels with micro protocols in digitized audio signals under consideration of different requirements. On the basis of experimental results, our design approaches are compared, and introduced into a protocol engineering approach for micro protocols.Comment: 20 pages, 7 figures, 4 table

    Robust video transmission using reversible watermarking techniques

    Get PDF
    This paper presents a novel error-resilient strategy which employs a reversible watermarking technique to protect the H.264/AVC video content. The proposed scheme adopts reversible watermarking to embed an error detection codeword within every Macro block (MB). The watermark is then extracted at the decoder and used to detect the corrupted MBs to be concealed. The proposed scheme further manages to recover the original video content after watermark extraction, thus providing no loss in video quality. The simulation results demonstrate that the proposed approach provides a substantial gain of up to 2.6 dB in Peak Signal-to-Noise Ratio (PSNR) relative to the standard with a minimal increase in complexity.peer-reviewe

    Robust decoder-based error control strategy for recovery of H.264/AVC video content

    Get PDF
    Real-time wireless conversational and broadcasting multimedia applications offer particular transmission challenges as reliable content delivery cannot be guaranteed. The undelivered and erroneous content causes significant degradation in quality of experience. The H.264/AVC standard includes several error resilient tools to mitigate this effect on video quality. However, the methods implemented by the standard are based on a packet-loss scenario, where corrupted slices are dropped and the lost information concealed. Partially damaged slices still contain valuable information that can be used to enhance the quality of the recovered video. This study presents a novel error recovery solution that relies on a joint source-channel decoder to recover only feasible slices. A major advantage of this decoder-based strategy is that it grants additional robustness while keeping the same transmission data rate. Simulation results show that the proposed approach manages to completely recover 30.79% of the corrupted slices. This provides frame-by-frame peak signal-to-noise ratio (PSNR) gains of up to 18.1%dB, a result which, to the knowledge of the authors, is superior to all other joint source-channel decoding methods found in literature. Furthermore, this error resilient strategy can be combined with other error resilient tools adopted by the standard to enhance their performance.peer-reviewe

    No reference quality assessment for MPEG video delivery over IP

    Get PDF
    corecore