1,127 research outputs found

    ProMix: Combating Label Noise via Maximizing Clean Sample Utility

    Full text link
    The ability to train deep neural networks under label noise is appealing, as imperfectly annotated data are relatively cheaper to obtain. State-of-the-art approaches are based on semi-supervised learning(SSL), which selects small loss examples as clean and then applies SSL techniques for boosted performance. However, the selection step mostly provides a medium-sized and decent-enough clean subset, which overlooks a rich set of clean samples. In this work, we propose a novel noisy label learning framework ProMix that attempts to maximize the utility of clean samples for boosted performance. Key to our method, we propose a matched high-confidence selection technique that selects those examples having high confidence and matched prediction with its given labels. Combining with the small-loss selection, our method is able to achieve a precision of 99.27 and a recall of 98.22 in detecting clean samples on the CIFAR-10N dataset. Based on such a large set of clean data, ProMix improves the best baseline method by +2.67% on CIFAR-10N and +1.61% on CIFAR-100N datasets. The code and data are available at https://github.com/Justherozen/ProMixComment: Winner of the 1st Learning and Mining with Noisy Labels Challenge in IJCAI-ECAI 2022 (an informal technical report

    Rethinking Noisy Label Learning in Real-world Annotation Scenarios from the Noise-type Perspective

    Full text link
    We investigate the problem of learning with noisy labels in real-world annotation scenarios, where noise can be categorized into two types: factual noise and ambiguity noise. To better distinguish these noise types and utilize their semantics, we propose a novel sample selection-based approach for noisy label learning, called Proto-semi. Proto-semi initially divides all samples into the confident and unconfident datasets via warm-up. By leveraging the confident dataset, prototype vectors are constructed to capture class characteristics. Subsequently, the distances between the unconfident samples and the prototype vectors are calculated to facilitate noise classification. Based on these distances, the labels are either corrected or retained, resulting in the refinement of the confident and unconfident datasets. Finally, we introduce a semi-supervised learning method to enhance training. Empirical evaluations on a real-world annotated dataset substantiate the robustness of Proto-semi in handling the problem of learning from noisy labels. Meanwhile, the prototype-based repartitioning strategy is shown to be effective in mitigating the adverse impact of label noise. Our code and data are available at https://github.com/fuxiAIlab/ProtoSemi

    Image Classification with Deep Learning in the Presence of Noisy Labels: A Survey

    Full text link
    Image classification systems recently made a giant leap with the advancement of deep neural networks. However, these systems require an excessive amount of labeled data to be adequately trained. Gathering a correctly annotated dataset is not always feasible due to several factors, such as the expensiveness of the labeling process or difficulty of correctly classifying data, even for the experts. Because of these practical challenges, label noise is a common problem in real-world datasets, and numerous methods to train deep neural networks with label noise are proposed in the literature. Although deep neural networks are known to be relatively robust to label noise, their tendency to overfit data makes them vulnerable to memorizing even random noise. Therefore, it is crucial to consider the existence of label noise and develop counter algorithms to fade away its adverse effects to train deep neural networks efficiently. Even though an extensive survey of machine learning techniques under label noise exists, the literature lacks a comprehensive survey of methodologies centered explicitly around deep learning in the presence of noisy labels. This paper aims to present these algorithms while categorizing them into one of the two subgroups: noise model based and noise model free methods. Algorithms in the first group aim to estimate the noise structure and use this information to avoid the adverse effects of noisy labels. Differently, methods in the second group try to come up with inherently noise robust algorithms by using approaches like robust losses, regularizers or other learning paradigms

    Meta Soft Label Generation for Noisy Labels

    Full text link
    The existence of noisy labels in the dataset causes significant performance degradation for deep neural networks (DNNs). To address this problem, we propose a Meta Soft Label Generation algorithm called MSLG, which can jointly generate soft labels using meta-learning techniques and learn DNN parameters in an end-to-end fashion. Our approach adapts the meta-learning paradigm to estimate optimal label distribution by checking gradient directions on both noisy training data and noise-free meta-data. In order to iteratively update soft labels, meta-gradient descent step is performed on estimated labels, which would minimize the loss of noise-free meta samples. In each iteration, the base classifier is trained on estimated meta labels. MSLG is model-agnostic and can be added on top of any existing model at hand with ease. We performed extensive experiments on CIFAR10, Clothing1M and Food101N datasets. Results show that our approach outperforms other state-of-the-art methods by a large margin.Comment: Accepted by ICPR 202

    Learning with Noisy labels via Self-supervised Adversarial Noisy Masking

    Full text link
    Collecting large-scale datasets is crucial for training deep models, annotating the data, however, inevitably yields noisy labels, which poses challenges to deep learning algorithms. Previous efforts tend to mitigate this problem via identifying and removing noisy samples or correcting their labels according to the statistical properties (e.g., loss values) among training samples. In this paper, we aim to tackle this problem from a new perspective, delving into the deep feature maps, we empirically find that models trained with clean and mislabeled samples manifest distinguishable activation feature distributions. From this observation, a novel robust training approach termed adversarial noisy masking is proposed. The idea is to regularize deep features with a label quality guided masking scheme, which adaptively modulates the input data and label simultaneously, preventing the model to overfit noisy samples. Further, an auxiliary task is designed to reconstruct input data, it naturally provides noise-free self-supervised signals to reinforce the generalization ability of deep models. The proposed method is simple and flexible, it is tested on both synthetic and real-world noisy datasets, where significant improvements are achieved over previous state-of-the-art methods
    • …
    corecore