2,437 research outputs found

    Security Evaluation of Support Vector Machines in Adversarial Environments

    Full text link
    Support Vector Machines (SVMs) are among the most popular classification techniques adopted in security applications like malware detection, intrusion detection, and spam filtering. However, if SVMs are to be incorporated in real-world security systems, they must be able to cope with attack patterns that can either mislead the learning algorithm (poisoning), evade detection (evasion), or gain information about their internal parameters (privacy breaches). The main contributions of this chapter are twofold. First, we introduce a formal general framework for the empirical evaluation of the security of machine-learning systems. Second, according to our framework, we demonstrate the feasibility of evasion, poisoning and privacy attacks against SVMs in real-world security problems. For each attack technique, we evaluate its impact and discuss whether (and how) it can be countered through an adversary-aware design of SVMs. Our experiments are easily reproducible thanks to open-source code that we have made available, together with all the employed datasets, on a public repository.Comment: 47 pages, 9 figures; chapter accepted into book 'Support Vector Machine Applications

    Protein Tertiary Model Assessment Using Granular Machine Learning Techniques

    Get PDF
    The automatic prediction of protein three dimensional structures from its amino acid sequence has become one of the most important and researched fields in bioinformatics. As models are not experimental structures determined with known accuracy but rather with prediction it’s vital to determine estimates of models quality. We attempt to solve this problem using machine learning techniques and information from both the sequence and structure of the protein. The goal is to generate a machine that understands structures from PDB and when given a new model, predicts whether it belongs to the same class as the PDB structures (correct or incorrect protein models). Different subsets of PDB (protein data bank) are considered for evaluating the prediction potential of the machine learning methods. Here we show two such machines, one using SVM (support vector machines) and another using fuzzy decision trees (FDT). First using a preliminary encoding style SVM could get around 70% in protein model quality assessment accuracy, and improved Fuzzy Decision Tree (IFDT) could reach above 80% accuracy. For the purpose of reducing computational overhead multiprocessor environment and basic feature selection method is used in machine learning algorithm using SVM. Next an enhanced scheme is introduced using new encoding style. In the new style, information like amino acid substitution matrix, polarity, secondary structure information and relative distance between alpha carbon atoms etc is collected through spatial traversing of the 3D structure to form training vectors. This guarantees that the properties of alpha carbon atoms that are close together in 3D space and thus interacting are used in vector formation. With the use of fuzzy decision tree, we obtained a training accuracy around 90%. There is significant improvement compared to previous encoding technique in prediction accuracy and execution time. This outcome motivates to continue to explore effective machine learning algorithms for accurate protein model quality assessment. Finally these machines are tested using CASP8 and CASP9 templates and compared with other CASP competitors, with promising results. We further discuss the importance of model quality assessment and other information from proteins that could be considered for the same

    Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning

    Get PDF
    Learning-based pattern classifiers, including deep networks, have shown impressive performance in several application domains, ranging from computer vision to cybersecurity. However, it has also been shown that adversarial input perturbations carefully crafted either at training or at test time can easily subvert their predictions. The vulnerability of machine learning to such wild patterns (also referred to as adversarial examples), along with the design of suitable countermeasures, have been investigated in the research field of adversarial machine learning. In this work, we provide a thorough overview of the evolution of this research area over the last ten years and beyond, starting from pioneering, earlier work on the security of non-deep learning algorithms up to more recent work aimed to understand the security properties of deep learning algorithms, in the context of computer vision and cybersecurity tasks. We report interesting connections between these apparently-different lines of work, highlighting common misconceptions related to the security evaluation of machine-learning algorithms. We review the main threat models and attacks defined to this end, and discuss the main limitations of current work, along with the corresponding future challenges towards the design of more secure learning algorithms.Comment: Accepted for publication on Pattern Recognition, 201

    Generative One-Shot Learning (GOL): A Semi-Parametric Approach to One-Shot Learning in Autonomous Vision

    Full text link
    Highly Autonomous Driving (HAD) systems rely on deep neural networks for the visual perception of the driving environment. Such networks are trained on large manually annotated databases. In this work, a semi-parametric approach to one-shot learning is proposed, with the aim of bypassing the manual annotation step required for training perceptions systems used in autonomous driving. The proposed generative framework, coined Generative One-Shot Learning (GOL), takes as input single one-shot objects, or generic patterns, and a small set of so-called regularization samples used to drive the generative process. New synthetic data is generated as Pareto optimal solutions from one-shot objects using a set of generalization functions built into a generalization generator. GOL has been evaluated on environment perception challenges encountered in autonomous vision.Comment: Web-site: http://rovislab.com/gol.htm

    Combat Identification of Synthetic Aperture Radar Images using Contextual Features and Bayesian Belief Networks

    Get PDF
    Given the nearly infinite combination of modifications and configurations for weapon systems, no two targets are ever exactly the same. Synthetic Aperture Radar (SAR) imagery and associated High Range Resolution (HRR) profiles of the same target will have different signatures when viewed from different angles. To overcome this challenge, data from a wide range of aspect and depression angles must be used to train pattern recognition algorithms. Alternatively, features invariant to aspect and depression angle must be found. This research uses simple segmentation algorithms and multivariate analysis methods to extract contextual features from SAR imagery. These features used in conjunction with HRR features improve classification accuracy at similar or extended operating conditions. Classification accuracy improvements achieved through Bayesian Belief Networks and the direct use of the contextual features in a template matching algorithm are demonstrated using a General Dynamics Data Collection System SAR data set

    Information theoretic combination of classifiers with application to face detection

    Get PDF
    Combining several classifiers has become a very active subdiscipline in the field of pattern recognition. For years, pattern recognition community has focused on seeking optimal learning algorithms able to produce very accurate classifiers. However, empirical experience proved that is is often much easier finding several relatively good classifiers than only finding one single very accurate predictor. The advantages of combining classifiers instead of single classifier schemes are twofold: it helps reducing the computational requirements by using simpler models, and it can improve the classification skills. It is commonly admitted that classifiers need to be complementary in order to improve their performances by aggregation. This complementarity is usually termed as diversity in classifier combination community. Although diversity is a very intuitive concept, explicitly using diversity measures for creating classifier ensembles is not as successful as expected. In this thesis, we propose an information theoretic framework for combining classifiers. In particular, we prove by means of information theoretic tools that diversity between classifiers is not sufficient to guarantee optimal classifier combination. In fact, we show that diversity and accuracies of the individual classifiers are generally contradictory: two very accurate classifiers cannot be diverse, and inversely, two very diverse classifiers will necessarily have poor classification skills. In order to tackle this contradiction, we propose a information theoretic score (ITS) that fixes a trade-off between these two quantities. A first possible application is to consider this new score as a selection criterion for extracting a good ensemble in a predefined pool of classifiers. We also propose an ensemble creation technique based on AdaBoost, by taking into account the information theoretic score for iteratively selecting the classifiers. As an illustration of efficient classifier combination technique, we propose several algorithms for building ensembles of Support Vector Machines (SVM). Support Vector Machines are one of the most popular discriminative approaches of pattern recognition and are often considered as state-of-the-art in binary classification. However these classifiers present one severe drawback when facing a very large number of training examples: they become computationally expensive to train. This problem can be addressed by decomposing the learning into several classification tasks with lower computational requirements. We propose to train several parallel SVM on subsets of the complete training set. We develop several algorithms for designing efficient ensembles of SVM by taking into account our information theoretic score. The second part of this thesis concentrates on human face detection, which appears to be a very challenging binary pattern recognition task. In this work, we focus on two main aspects: feature extraction and how to apply classifier combination techniques to face detection systems. We introduce new geometrical filters called anisotropic Gaussian filters, that are very efficient to model face appearance. Finally we propose a parallel mixture of boosted classifier for reducing the false positive rate and decreasing the training time, while keeping the testing time unchanged. The complete face detection system is evaluated on several datasets, showing that it compares favorably to state-of-the-art techniques
    • …
    corecore