2,386 research outputs found

    Forecasting the multifactorial interval grey number sequences using grey relational model and GM (1, N) model based on effective information transformation

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.In the context of data eruption, the data often shows a short-term pattern and changes rapidly which makes it difficult to use a single real value to express. For this kind of small-sample and interval data, how to analyze and predict muti-factor sequences efficiently becomes a problem. By this means, grey system theory (GST) is developed in which the interval grey numbers, as a typical object of GST, characterize the range of data and the grey relational and prediction models analyze the relations of multiple grey numbers and forecast the future. However, traditional grey relative relational model has some limitations: the results obtained always show low resolution and there are no extractions for the interval feature information from the interval grey number sequence. In this paper, the grey relational analysis model (GRA) based on effective information transformation of interval grey numbers is established, which contains comprehensive information of area differences and slope variances and optimizes the resolution of traditional grey degree. Then, according to the relational results, the multivariable GM model (GM(1,N)) is proposed to forecast the interval grey number sequence. To verify the effectiveness of this novel model, it is established to analyze the relationship between the degree of traffic congestion and its relevant factors in the Yangtze River Delta of China and predict the development of urban traffic congestion degrees in this area over the next five years. In addition, some traditional statistical methods (principal component analysis, multiple linear regression models and curve regression models) are established for comparisons. The results show high performances of the novel GRA model and GM(1,N) model, which means the models proposed in this paper are suitable for interval grey numbers from regional data. The strengths which recommend the use of this novel method lie in its high recognition mechanism and muti-angle information transformation for interval grey numbers as well as its characteristic of timeliness in information processing

    Robust predictive tracking control for a class of nonlinear systems

    Get PDF
    A robust predictive tracking control (RPTC) approach is developed in this paper to deal with a class of nonlinear SISO systems. To improve the control performance, the RPTC architecture mainly consists of a robust fuzzy PID (RFPID)-based control module and a robust PI grey model (RPIGM)-based prediction module. The RFPID functions as the main control unit to drive the system to desired goals. The control gains are online optimized by neural network-based fuzzy tuners. Meanwhile using grey and neural network theories, the RPIGM is designed with two tasks: to forecast the future system output which is fed to the RFPID to optimize the controller parameters ahead of time; and to estimate the impacts of noises and disturbances on the system performance in order to create properly a compensating control signal. Furthermore, a fuzzy grey cognitive map (FGCM)-based decision tool is built to regulate the RPIGM prediction step size to maximize the control efforts. Convergences of both the predictor and controller are theoretically guaranteed by Lyapunov stability conditions. The effectiveness of the proposed RPTC approach has been proved through real-time experiments on a nonlinear SISO system

    Applications of and extensions to state-space models

    Get PDF
    State-space models have proven invaluable in the analysis of dynamic data, specifically time series data. They provide a natural and interpretable framework to learn about and describe dynamic processes. State-space models also provide a flexible framework for embedding prescriptive, mathematical models in ways that account for multiple sources of uncertainty. When considered within the more general directed graphical model formalism, state-space models can be reimagined and extended into arenas beyond the reach of traditional state-space models. In three papers, we consider various applications of and extensions to state-space models. All papers stem from collaborations with Los Alamos National Laboratory. In the field of space weather forecasting, many modeling approaches have been developed in the last 25 years. These approaches attempt to make sense of the dynamic and not-well-understood relationships between electron flux intensities and relevant covariates. Many of these forecasting models possess inherent limitations because they are static in nature and thus are constrained to customized and narrow time windows. In Chapter 2, we discuss these limitations and present an alternate approach to space weather forecasting utilizing dynamic linear models (DLMs). Benefits of dynamic modeling when compared to static modeling are discussed and ground work is laid for future dynamic forecasting endeavors in space weather. This work was published in the journal Space Weather under research article number 10.1002/2014SW001057 in June 2014. Multiscale modeling involves decomposing or explicitly modeling processes that arise at multiple scales. In Chapter 3, we extend the DLM into the multiscale arena with the presentation of the multiscale dynamic linear model (MSDLM). We present the MSDLM within the directed graphical model formalism. In so doing, we provide the necessary background to consider multiscale modeling generally. The MSDLM is a multiscale time series model that is interpretable, flexible, and coherently combines multiple scales of information in a principled, unified framework. Estimation and sampling procedures are presented. We illustrate the efficacy of the MSDLM by revisiting the problem of space weather forecasting discussed in Chapter 2. Forecasting seasonal influenza in the U.S. is challenging and consequential. It is challenging because there is uncertainty in the form of the disease transmission process, the process is only partially observed, and those observations are noisy. It is consequential because influenza poses serious risks to both national security and public health. In Chapter 4, we propose a non-Gaussian, nonlinear state-space model that embeds a compartmental model (i.e., a set of nonlinear, ordinary differential equations) into the state equations. The state-space framework provides valuable flexibility to the deterministic disease transmission process while simultaneously allowing and accounting for uncertainties in the parameters, the process, and the measurement mechanism. Prior specification is discussed in detail. Forecasting metrics are proposed and compared with competing models

    New Progress of Grey System Theory in The New Millennium

    Get PDF
    Purpose – The purpose of this paper is to summarize the progress in grey system research during 2000- 2015, so as to present some important new concepts, models, methods and a new framework of grey system theory. Design/methodology/approach –The new thinking, new models and new methods of grey system theory and their applications are presented in this paper. It includes algorithm rules of grey numbers based on the “Kernel” and the degree of greyness of grey numbers, the concept of general grey numbers, the synthesis axiom of degree of greyness of grey numbers and their operations; the general form of buffer operators of grey sequence operators; the four basic models of GM(1,1), such as Even Grey Model(EGM), Original Difference Grey Model(ODGM), Even Difference Grey Model(EDGM), Discrete Grey Model(DGM) and the suitable sequence type of each basic model, and suitable range of most used grey forecasting models; the similarity degree of grey incidences, the closeness degree of grey incidences and the three dimensional absolute degree of grey incidence of grey incidence analysis models; the grey cluster model based on center-point and end-point mixed triangular whitenization functions; the multi-attribute intelligent grey target decision model, the two stages decision model with grey synthetic measure of grey decision models; grey game models, grey input-output models of grey combined models; and the problems of robust stability for grey stochastic time-delay systems of neutral type, distributed-delay type and neutral distributed-delay type of grey control, etc. And the new framework of grey system theory is given as well. Findings –The problems which remain for further studying are discussed at the end of each section. The reader could know the general picture of research and developing trend of grey system theory from this paper. Practical implications – A lot of successful practical applications of the new models to solve various problems have been found in many different areas of natural science, social science, and engineering, including spaceflight, civil aviation, information, metallurgy, machinery, petroleum, chemical industry, electrical power, electronics, light industries, energy resources, transportation, medicine, health, agriculture, forestry, geography, hydrology, seismology, meteorology, environment protection, architecture, behavioral science, management science, law, education, military science, etc. These practical applications have brought forward definite and noticeable social and economic benefits. It demonstrates a wide range of applicability of grey system theory, especially in the situation where the available information is incomplete and the collected data are inaccurate. Originality/value –The reader is given a general picture of grey systems theory as a new model system and a new framework for studying problems where partial information is known; especially for uncertain systems with few data points and poor information. The problems remaining for further studying are identified at the end of each section. Keywords Grey systems theory, Operations of grey numbers, Buffer operators, Grey forecasting models, Grey incidence analysis models, Grey cluster evaluation models, Grey decision models, Combined grey models, Grey contro

    Multisensor Fusion Remote Sensing Technology For Assessing Multitemporal Responses In Ecohydrological Systems

    Get PDF
    Earth ecosystems and environment have been changing rapidly due to the advanced technologies and developments of humans. Impacts caused by human activities and developments are difficult to acquire for evaluations due to the rapid changes. Remote sensing (RS) technology has been implemented for environmental managements. A new and promising trend in remote sensing for environment is widely used to measure and monitor the earth environment and its changes. RS allows large-scaled measurements over a large region within a very short period of time. Continuous and repeatable measurements are the very indispensable features of RS. Soil moisture is a critical element in the hydrological cycle especially in a semiarid or arid region. Point measurement to comprehend the soil moisture distribution contiguously in a vast watershed is difficult because the soil moisture patterns might greatly vary temporally and spatially. Space-borne radar imaging satellites have been popular because they have the capability to exhibit all weather observations. Yet the estimation methods of soil moisture based on the active or passive satellite imageries remain uncertain. This study aims at presenting a systematic soil moisture estimation method for the Choke Canyon Reservoir Watershed (CCRW), a semiarid watershed with an area of over 14,200 km2 in south Texas. With the aid of five corner reflectors, the RADARSAT-1 Synthetic Aperture Radar (SAR) imageries of the study area acquired in April and September 2004 were processed by both radiometric and geometric calibrations at first. New soil moisture estimation models derived by genetic programming (GP) technique were then developed and applied to support the soil moisture distribution analysis. The GP-based nonlinear function derived in the evolutionary process uniquely links a series of crucial topographic and geographic features. Included in this process are slope, aspect, vegetation cover, and soil permeability to compliment the well-calibrated SAR data. Research indicates that the novel application of GP proved useful for generating a highly nonlinear structure in regression regime, which exhibits very strong correlations statistically between the model estimates and the ground truth measurements (volumetric water content) on the basis of the unseen data sets. In an effort to produce the soil moisture distributions over seasons, it eventually leads to characterizing local- to regional-scale soil moisture variability and performing the possible estimation of water storages of the terrestrial hydrosphere. A new evolutionary computational, supervised classification scheme (Riparian Classification Algorithm, RICAL) was developed and used to identify the change of riparian zones in a semi-arid watershed temporally and spatially. The case study uniquely demonstrates an effort to incorporating both vegetation index and soil moisture estimates based on Landsat 5 TM and RADARSAT-1 imageries while trying to improve the riparian classification in the Choke Canyon Reservoir Watershed (CCRW), South Texas. The CCRW was selected as the study area contributing to the reservoir, which is mostly agricultural and range land in a semi-arid coastal environment. This makes the change detection of riparian buffers significant due to their interception capability of non-point source impacts within the riparian buffer zones and the maintenance of ecosystem integrity region wide. The estimation of soil moisture based on RADARSAT-1 Synthetic Aperture Radar (SAR) satellite imagery as previously developed was used. Eight commonly used vegetation indices were calculated from the reflectance obtained from Landsat 5 TM satellite images. The vegetation indices were individually used to classify vegetation cover in association with genetic programming algorithm. The soil moisture and vegetation indices were integrated into Landsat TM images based on a pre-pixel channel approach for riparian classification. Two different classification algorithms were used including genetic programming, and a combination of ISODATA and maximum likelihood supervised classification. The white box feature of genetic programming revealed the comparative advantage of all input parameters. The GP algorithm yielded more than 90% accuracy, based on unseen ground data, using vegetation index and Landsat reflectance band 1, 2, 3, and 4. The detection of changes in the buffer zone was proved to be technically feasible with high accuracy. Overall, the development of the RICAL algorithm may lead to the formulation of more effective management strategies for the handling of non-point source pollution control, bird habitat monitoring, and grazing and live stock management in the future. Soil properties, landscapes, channels, fault lines, erosion/deposition patches, and bedload transport history show geologic and geomorphologic features in a variety of watersheds. In response to these unique watershed characteristics, the hydrology of large-scale watersheds is often very complex. Precipitation, infiltration and percolation, stream flow, plant transpiration, soil moisture changes, and groundwater recharge are intimately related with each other to form water balance dynamics on the surface of these watersheds. Within this chapter, depicted is an optimal site selection technology using a grey integer programming (GIP) model to assimilate remote sensing-based geo-environmental patterns in an uncertain environment with respect to some technical and resources constraints. It enables us to retrieve the hydrological trends and pinpoint the most critical locations for the deployment of monitoring stations in a vast watershed. Geo-environmental information amassed in this study includes soil permeability, surface temperature, soil moisture, precipitation, leaf area index (LAI) and normalized difference vegetation index (NDVI). With the aid of a remote sensing-based GIP analysis, only five locations out of more than 800 candidate sites were selected by the spatial analysis, and then confirmed by a field investigation. The methodology developed in this remote sensing-based GIP analysis will significantly advance the state-of-the-art technology in optimum arrangement/distribution of water sensor platforms for maximum sensing coverage and information-extraction capacity. Effective water resources management is a critically important priority across the globe. While water scarcity limits the uses of water in many ways, floods also have caused so many damages and lives. To more efficiently use the limited amount of water or to resourcefully provide adequate time for flood warning, the results have led us to seek advanced techniques for improving streamflow forecasting. The objective of this section of research is to incorporate sea surface temperature (SST), Next Generation Radar (NEXRAD) and meteorological characteristics with historical stream data to forecast the actual streamflow using genetic programming. This study case concerns the forecasting of stream discharge of a complex-terrain, semi-arid watershed. This study elicits microclimatological factors and the resultant stream flow rate in river system given the influence of dynamic basin features such as soil moisture, soil temperature, ambient relative humidity, air temperature, sea surface temperature, and precipitation. Evaluations of the forecasting results are expressed in terms of the percentage error (PE), the root-mean-square error (RMSE), and the square of the Pearson product moment correlation coefficient (r-squared value). The developed models can predict streamflow with very good accuracy with an r-square of 0.84 and PE of 1% for a 30-day prediction

    Design and Implementation of Smart Sensors with Capabilities of Process Fault Detection and Variable Prediction

    Get PDF
    A typical sensor consists of a sensing element and a transmitter. The major functions of a transmitter are limited to data acquisition and communication. The recently developed transmitters with ‘smart’ functions have been focused on easy setup/maintenance of the transmitter itself such as self-calibration and self-configuration. Recognizing the growing computational capabilities of microcontroller units (MCUs) used in these transmitters and underutilized computational resources, this thesis investigates the feasibility of adding additional functionalities to a transmitter to make it ‘smart’ without modifying its foot-print, nor adding supplementary hardware. Hence, a smart sensor is defined as sensing elements combined with a smart transmitter. The added functionalities enhance a smart sensor with respect to performing process fault detection and variable prediction. This thesis starts with literature review to identify the state-of-the-arts in this field and also determine potential industry needs for the added functionalities. Particular attentions have been paid to an existing commercial temperature transmitter named NCS-TT105 from Microcyber Corporation. Detailed examination has been made in its internal hardware architecture, software execution environment, and additional computational resources available for accommodating additional functions. Furthermore, the schemes of the algorithms for realizing process fault detection and variable prediction have been examined from both theoretical and feasibility perspectives to incorporate onboard NCS-TT105. An important body of the thesis is to implement additional functions in the MCUs of NCS-TT105 by allocating real-time execution of different tasks with assigned priorities in the real-time operating system (RTOS). The enhanced NCS-TT105 has gone through extensive evaluation on a physical process control test facility under various normal/fault conditions. The test results are satisfactory and design specifications have been achieved. To the best knowledge of the author, this is the first time that process fault detection and variable prediction have been implemented right onboard of a commercial transmitter. The enhanced smart transmitter is capable of providing the information of incipient faults in the process and future changes of critical process variables. It is believed that this is an initial step towards the realization of distributed intelligence in process control, where important decisions regarding the process can be made at a sensor level

    Enhancing statistical wind speed forecasting models : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engineering at Massey University, Manawatƫ Campus, New Zealand

    Get PDF
    In recent years, wind speed forecasting models have seen significant development and growth. In particular, hybrid models have been emerging since the last decade. Hybrid models combine two or more techniques from several categories, with each model utilizing its distinct strengths. Mainly, data-driven models that include statistical and Artificial Intelligence/Machine Learning (AI/ML) models are deployed in hybrid models for shorter forecasting time horizons (< 6hrs). Literature studies show that machine learning models have gained enormous potential owing to their accuracy and robustness. On the other hand, only a handful of studies are available on the performance enhancement of statistical models, despite the fact that hybrid models are incomplete without statistical models. To address the knowledge gap, this thesis identified the shortcomings of traditional statistical models while enhancing prediction accuracy. Three statistical models are considered for analyses: Grey Model [GM(1,1)], Markov Chain, and Holt’s Double Exponential Smoothing models. Initially, the problems that limit the forecasting models' applicability are highlighted. Such issues include negative wind speed predictions, failure of predetermined accuracy levels, non-optimal estimates, and additional computational cost with limited performance. To address these concerns, improved forecasting models are proposed considering wind speed data of Palmerston North, New Zealand. Several methodologies have been developed to improve the model performance and fulfill the necessary and sufficient conditions. These approaches include adjusting dynamic moving window, self-adaptive state categorization algorithm, a similar approach to the leave-one-out method, and mixed initialization method. Keeping in view the application of the hybrid methods, novel MODWT-ARIMA-Markov and AGO-HDES models are further proposed as secondary objectives. Also, a comprehensive analysis is presented by comparing sixteen models from three categories, each for four case studies, three rolling windows, and three forecasting horizons. Overall, the improved models showed higher accuracy than their counter traditional models. Finally, the future directions are highlighted that need subsequent research to improve forecasting performance further

    Essays on Optimization and Modeling Methods for Reliability and Reliability Growth

    Get PDF
    This research proposes novel solution techniques in the realm of reliability and reliability growth. We first consider a redundancy allocation problem to design a system that maximizes the reliability of a complex series-parallel system comprised of components with deterministic reliability. We propose a new meta-heuristic, inspired by the behavior of bats hunting prey, to find component allocation and redundancy levels that provide optimal or near-optimal system reliability levels. Each component alternative has an associated cost and weight and the system is constrained by cost and weight factors. We allow for component mixing within a subsystem, with a pre-defined maximum level of component redundancy per subsystem, which adds to problem complexity and prevents an optimal solution from being derived analytically. The second problem of interest involves how we model a system\u27s reliability growth as it undergoes testing and how we minimize deviation from planned growth. We propose a Grey Model, GM(1,1) for modeling reliability growth on complex systems when failure data is sparse. The GM(1,1) model\u27s performance is benchmarked with the Army Materiel Systems Analysis Activity (AMSAA) model, the standard within the reliability growth modeling community. For continuous and discrete (one-shot) testing, the GM(1,1) model shows itself to be superior to the AMSAA model when modeling reliability growth with small failure data sets. Finally, to ensure the reliability growth planning curve is followed as closely as possible, we determine the best level of corrective action to employ on a discovered failure mode, with corrective action levels allowed to vary based upon the amount of resources allocated for failure mode improvement. We propose a Markov Decision Process (MDP) approach to handle the stochasticity of failure data and its corresponding system reliability estimate. By minimizing a weighted deviation from the planning curve, systems will ideally meet the reliability milestones specified by the planning curve, while simultaneously avoiding system over-development and unnecessary resource expenditure for over-correction of failure modes
    • 

    corecore