13,867 research outputs found

    Distributed Lagrange Multiplier/Fictitious Domain Finite Element Method for a Transient Stokes Interface Problem with Jump Coefficients

    Get PDF
    The distributed Lagrange multiplier/fictitious domain (DLM/FD)-mixed finite element method is developed and analyzed in this paper for a transient Stokes interface problem with jump coefficients. The semi- and fully discrete DLM/FD-mixed finite element scheme are developed for the first time for this problem with a moving interface, where the arbitrary Lagrangian-Eulerian (ALE) technique is employed to deal with the moving and immersed subdomain. Stability and optimal convergence properties are obtained for both schemes. Numerical experiments are carried out for different scenarios of jump coefficients, and all theoretical results are validated

    Higher-order finite element methods for elliptic problems with interfaces

    Get PDF
    We present higher-order piecewise continuous finite element methods for solving a class of interface problems in two dimensions. The method is based on correction terms added to the right-hand side in the standard variational formulation of the problem. We prove optimal error estimates of the methods on general quasi-uniform and shape regular meshes in maximum norms. In addition, we apply the method to a Stokes interface problem, adding correction terms for the velocity and the pressure, obtaining optimal convergence results.Comment: 26 pages, 6 figures. An earlier version of this paper appeared on November 13, 2014 in http://www.brown.edu/research/projects/scientific-computing/reports/201

    A Nitsche-based cut finite element method for a fluid--structure interaction problem

    Full text link
    We present a new composite mesh finite element method for fluid--structure interaction problems. The method is based on surrounding the structure by a boundary-fitted fluid mesh which is embedded into a fixed background fluid mesh. The embedding allows for an arbitrary overlap of the fluid meshes. The coupling between the embedded and background fluid meshes is enforced using a stabilized Nitsche formulation which allows us to establish stability and optimal order \emph{a priori} error estimates, see~\cite{MassingLarsonLoggEtAl2013}. We consider here a steady state fluid--structure interaction problem where a hyperelastic structure interacts with a viscous fluid modeled by the Stokes equations. We evaluate an iterative solution procedure based on splitting and present three-dimensional numerical examples.Comment: Revised version, 18 pages, 7 figures. Accepted for publication in CAMCo

    Immersed Boundary Smooth Extension: A high-order method for solving PDE on arbitrary smooth domains using Fourier spectral methods

    Full text link
    The Immersed Boundary method is a simple, efficient, and robust numerical scheme for solving PDE in general domains, yet it only achieves first-order spatial accuracy near embedded boundaries. In this paper, we introduce a new high-order numerical method which we call the Immersed Boundary Smooth Extension (IBSE) method. The IBSE method achieves high-order accuracy by smoothly extending the unknown solution of the PDE from a given smooth domain to a larger computational domain, enabling the use of simple Cartesian-grid discretizations (e.g. Fourier spectral methods). The method preserves much of the flexibility and robustness of the original IB method. In particular, it requires minimal geometric information to describe the boundary and relies only on convolution with regularized delta-functions to communicate information between the computational grid and the boundary. We present a fast algorithm for solving elliptic equations, which forms the basis for simple, high-order implicit-time methods for parabolic PDE and implicit-explicit methods for related nonlinear PDE. We apply the IBSE method to solve the Poisson, heat, Burgers', and Fitzhugh-Nagumo equations, and demonstrate fourth-order pointwise convergence for Dirichlet problems and third-order pointwise convergence for Neumann problems
    • …
    corecore