126 research outputs found

    High-efficiency and positivity-preserving stabilized SAV methods for gradient flows

    Full text link
    The scalar auxiliary variable (SAV)-type methods are very popular techniques for solving various nonlinear dissipative systems. Compared to the semi-implicit method, the baseline SAV method can keep a modified energy dissipation law but doubles the computational cost. The general SAV approach does not add additional computation but needs to solve a semi-implicit solution in advance, which may potentially compromise the accuracy and stability. In this paper, we construct a novel first- and second-order unconditional energy stable and positivity-preserving stabilized SAV (PS-SAV) schemes for L2L^2 and Hβˆ’1H^{-1} gradient flows. The constructed schemes can reduce nearly half computational cost of the baseline SAV method and preserve its accuracy and stability simultaneously. Meanwhile, the introduced auxiliary variable is always positive while the baseline SAV cannot guarantee this positivity-preserving property. Unconditionally energy dissipation laws are derived for the proposed numerical schemes. We also establish a rigorous error analysis of the first-order scheme for the Allen-Cahn type equation in l∞(0,T;H1(Ξ©))l^{\infty}(0,T; H^1(\Omega) ) norm. In addition we propose an energy optimization technique to optimize the modified energy close to the original energy. Several interesting numerical examples are presented to demonstrate the accuracy and effectiveness of the proposed methods

    A convergent SAV scheme for Cahn--Hilliard equations with dynamic boundary conditions

    Full text link
    The Cahn-Hilliard equation is one of the most common models to describe phase separation processes in mixtures of two materials. For a better description of short-range interactions between the material and the boundary, various dynamic boundary conditions for this equation have been proposed. Recently, a family of models using Cahn-Hilliard-type equations on the boundary of the domain to describe adsorption processes was analysed (cf. Knopf, Lam, Liu, Metzger, ESAIM: Math. Model. Numer. Anal., 2021). This family of models includes the case of instantaneous adsorption processes studied by Goldstein, Miranville, and Schimperna (Physica D, 2011) as well as the case of vanishing adsorption rates which was investigated by Liu and Wu (Arch. Ration. Mech. Anal., 2019). In this paper, we are interested in the numerical treatment of these models and propose an unconditionally stable, linear, fully discrete finite element scheme based on the scalar auxiliary variable approach. Furthermore, we establish the convergence of discrete solutions towards suitable weak solutions of the original model. Thereby, when passing to the limit, we are able to remove the auxiliary variables introduced in the discrete setting completely. Finally, we present simulations based on the proposed linear scheme and compare them to results obtained using a stable, non-linear scheme to underline the practicality of our scheme
    • …
    corecore