6 research outputs found

    Convergence of an adaptive mixed finite element method for general second order linear elliptic problems

    Full text link
    The convergence of an adaptive mixed finite element method for general second order linear elliptic problems defined on simply connected bounded polygonal domains is analyzed in this paper. The main difficulties in the analysis are posed by the non-symmetric and indefinite form of the problem along with the lack of the orthogonality property in mixed finite element methods. The important tools in the analysis are a posteriori error estimators, quasi-orthogonality property and quasi-discrete reliability established using representation formula for the lowest-order Raviart-Thomas solution in terms of the Crouzeix-Raviart solution of the problem. An adaptive marking in each step for the local refinement is based on the edge residual and volume residual terms of the a posteriori estimator. Numerical experiments confirm the theoretical analysis.Comment: 24 pages, 8 figure

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal
    corecore