106 research outputs found

    Error analysis of ICESat waveform processing by investigating overlapping pairs over Europe

    Get PDF
    Full waveform laser altimetry is a recently developed method to obtain a complete vertical profile of the height of objects in the footprint as illuminated by a laser pulse. The richness of the signal also complicates the processing. One way to improve the processing strategy is to analyze differences of waveforms that should be very similar because they were obtained at approximately the same time and location. Such waveform pairs are still difficult to find. Here it is shown how to use the archive of ICESat space-borne altimetry data over Europe to determine a set of tenths of thousands of at least partial overlapping waveform pairs. The differences in the values of the waveform parameters, median energy, waveform extent, relative returned energy and intensity distribution are determined and discussed. As a case study, three typical pairs of almost perfectly overlapping waveforms are shown, were considerable differences are still occurring. In all three cases an explanation for these differences is found and discussed. Further analysis of the waveform pairs in this database is expected to considerably improve automatic processing of full waveform data

    Elevation and Deformation Extraction from TomoSAR

    Get PDF
    3D SAR tomography (TomoSAR) and 4D SAR differential tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to provide an essential innovation of SAR Interferometry for many applications, sensing complex scenes with multiple scatterers mapped into the same SAR pixel cell. However, these are still influenced by DEM uncertainty, temporal decorrelation, orbital, tropospheric and ionospheric phase distortion and height blurring. In this thesis, these techniques are explored. As part of this exploration, the systematic procedures for DEM generation, DEM quality assessment, DEM quality improvement and DEM applications are first studied. Besides, this thesis focuses on the whole cycle of systematic methods for 3D & 4D TomoSAR imaging for height and deformation retrieval, from the problem formation phase, through the development of methods to testing on real SAR data. After DEM generation introduction from spaceborne bistatic InSAR (TanDEM-X) and airborne photogrammetry (Bluesky), a new DEM co-registration method with line feature validation (river network line, ridgeline, valley line, crater boundary feature and so on) is developed and demonstrated to assist the study of a wide area DEM data quality. This DEM co-registration method aligns two DEMs irrespective of the linear distortion model, which improves the quality of DEM vertical comparison accuracy significantly and is suitable and helpful for DEM quality assessment. A systematic TomoSAR algorithm and method have been established, tested, analysed and demonstrated for various applications (urban buildings, bridges, dams) to achieve better 3D & 4D tomographic SAR imaging results. These include applying Cosmo-Skymed X band single-polarisation data over the Zipingpu dam, Dujiangyan, Sichuan, China, to map topography; and using ALOS L band data in the San Francisco Bay region to map urban building and bridge. A new ionospheric correction method based on the tile method employing IGS TEC data, a split-spectrum and an ionospheric model via least squares are developed to correct ionospheric distortion to improve the accuracy of 3D & 4D tomographic SAR imaging. Meanwhile, a pixel by pixel orbit baseline estimation method is developed to address the research gaps of baseline estimation for 3D & 4D spaceborne SAR tomography imaging. Moreover, a SAR tomography imaging algorithm and a differential tomography four-dimensional SAR imaging algorithm based on compressive sensing, SAR interferometry phase (InSAR) calibration reference to DEM with DEM error correction, a new phase error calibration and compensation algorithm, based on PS, SVD, PGA, weighted least squares and minimum entropy, are developed to obtain accurate 3D & 4D tomographic SAR imaging results. The new baseline estimation method and consequent TomoSAR processing results showed that an accurate baseline estimation is essential to build up the TomoSAR model. After baseline estimation, phase calibration experiments (via FFT and Capon method) indicate that a phase calibration step is indispensable for TomoSAR imaging, which eventually influences the inversion results. A super-resolution reconstruction CS based study demonstrates X band data with the CS method does not fit for forest reconstruction but works for reconstruction of large civil engineering structures such as dams and urban buildings. Meanwhile, the L band data with FFT, Capon and the CS method are shown to work for the reconstruction of large manmade structures (such as bridges) and urban buildings

    Using a new generation of remote sensing to monitor Peru’s mountain glaciers

    Get PDF
    Remote sensing technologies are integral to monitoring mountain glaciers in a warming world. Tropical glaciers, of which around 70% are located in Peru, are particularly at risk as a result of climate warming. Satellite missions and field-based platforms have transformed understanding of the processes driving mountain glacier dynamics and the associated emergence of hazards (e.g. avalanches, floods, landslides), yet are seldom specialised to overcome the unique challenges of acquiring data in mountainous environments. A ‘new generation’ of remote sensing, marked by open access to powerful cloud computing and large datasets, high resolution satellite missions, and low-cost science-grade field sensors, looks to revolutionise the way we monitor the mountain cryosphere. In this thesis, three novel remote sensing techniques and their applicability towards monitoring the glaciers of the Peruvian Cordillera Vilcanota are examined. Using novel processing chains and image archives generated by the ASTER satellite, the first mass balance estimate of the Cordillera Vilcanota is calculated (-0.48 ± 0.07 m w.e. yr-1) and ELA change of up to 32.8 m per decade in the neighbouring Cordillera Vilcabamba is quantified. The performance of new satellite altimetry missions, Sentinel-3 and ICESat-2, are assessed, with the tracking mode of Sentinel-3 being a key limitation of the potential for its use over mountain environments. Although currently limited in its ability to extract widespread mass balance measurements over mountain glaciers, other applications for ICESat-2 in long-term monitoring of mountain glaciers include quantifying surface elevation change, identifying large accumulation events, and monitoring lake bathymetry. Finally, a novel low-cost method of performing timelapse photogrammetry using Raspberry Pi camera sensors is created and compared to 3D models generated by a UAV. Mean difference between the Raspberry Pi and UAV sensors is 0.31 ± 0.74 m, giving promise to the use of these sensors for long-term monitoring of recession and short-term warning of hazards at glacier calving fronts. Together, this ‘new generation’ of remote sensing looks to provide new glaciological insights and opportunities for regular monitoring of data-scarce mountainous regions. The techniques discussed in this thesis could benefit communities and societal programmes in rapidly deglaciating environments, including across the Cordillera Vilcanota

    Forest attributes mapping with SAR data in the romanian South-Eastern Carpathians requirements and outcomes

    Get PDF
    Esta tesis doctoral se centra en la estimación de variables forestales en la zona Sureste de los Cárpatos Rumanos a partir de imágenes de radar de apertura sintética. La investigación abarca parte del preprocesado de las imágenes, métodos de generación de mosaicos y la extracción de la cobertura de bosque, sus subtipos o su biomasa. La tesis se desarrolló en el Instituto Nacional de Investigación y Desarrollo Forestal Marín Dracea (INCDS) y la Universidad de Alcalá (UAH) gracias a varios proyectos: el proyecto EO-ROFORMON del INCDS (Prototyping an Earth-Observation based monitoring and forecasting system for the Romanian forests), y el proyecto EMAFOR de la UAH (Synthetic Aperture Radar (SAR) enabled Analysis Ready Data (ARD) cubes for efficient monitoring of agricultural and forested landscapes). El proyecto EO-ROFORMON fue financiado por la Autoridad Nacional para la Investigación Científica de Rumania y el Fondo Europeo de Desarrollo Regional. El proyecto EMAFOR fue financiado por la Comunidad Autónoma de Madrid (España). El objetivo de esta tesis es el desarrollo de algoritmos para la extracción de variables forestales de uso general como la cobertura, el tipo o la biomasa del bosque a partir de imagen de radar de apertura sintética. Para alcanzar dicho propósito se analizaron posibles fuentes de sesgo sistemático que podrían aparecer en zonas de montaña (ej., normalización topográfica, generación de mosaicos), y se aplicaron técnicas de aprendizaje de máquina para tareas de clasificación y regresión. La tesis contiene ocho secciones: una introducción, cinco publicaciones en revistas o actas de congresos indexados, una pendiente de publicación (quinto capítulo) y las conclusiones. La introducción contextualiza la importancia del bosque, cómo se recoge la información sobre su estado (ej., inventario forestal) y las iniciativas o marcos legislativos que requieren dicha información. A continuación, se describe cómo la teledetección puede complementar la información de inventario forestal, detallando el contexto histórico de las distintas tecnologías, su funcionamiento, y cómo pueden ser aplicadas para la extracción de información forestal. Por último, se describe la problemática y el monitoreo del bosque en Rumanía, detallando el objetivo de la tesis y su estructura. El primer capítulo analiza la influencia del modelo digital de elevaciones (MDE) en la calidad de la normalización topográfica, analizando tres MDE globales (SRTM, AW3D y TanDEM-X DEM) y uno nacional (PNOA-LiDAR). Los experimentos se basan en la comparación entre órbitas, con un MDE de referencia, y la variación del acierto en la clasificación dependiendo del MDE empleado para la normalización. Los resultados muestran una menor diferencia ente órbitas al utilizar un MDE con una mejor resolución (ej. TanDEM-X, PNOA-LIDAR), especialmente en el caso de zonas con fuertes pendientes o formas del terreno complejas, como pueden ser los valles. En zonas de alta montaña las imágenes de radar de apertura sintética (SAR) sufren frecuentes distorsiones. Estas distorsiones dependen de la geometría de adquisición, por lo que es posible combinar imágenes adquiridas desde varias órbitas para que la cobertura sea lo más completa posible. El segundo capítulo evalúa dos metodologías para la clasificación de usos del suelo utilizando datos de Sentinel-1 adquiridos desde varias órbitas. El primer método crea clasificaciones por órbita y las combina, mientras que el segundo genera un mosaico con datos de múltiples órbitas y lo clasifica. El acierto obtenido mediante combinación de clasificaciones es ligeramente mayor, mientras que la clasificación de mosaicos tiene importantes omisiones de las zonas boscosas debido a problemas en la normalización topográfica y a los efectos direccionales. El tercer capítulo se enfoca en separar la cobertura forestal de otras coberturas del suelo (urbano, vegetación baja, agua) analizando la utilidad de las variables basadas en la coherencia interferométrica. En él se realizan tres clasificaciones de máquina vector-soporte basadas en un conjunto concreto de variables. El primer conjunto contiene las estadísticas anuales de la retrodispersión (media y desviación típica anual), el segundo añade la coherencia a largo plazo (separación temporal mayor a un año), el tercero incluye las estadísticas de la coherencia a corto plazo (mínima separación temporal). Utilizar variables basadas en la coherencia aumenta el acierto de la clasificación hasta un 5% y reduce los errores de omisión de la cobertura forestal. El cuarto capítulo evalúa la posibilidad de detectar talas selectivas utilizando datos de Sentinel-1 y Sentinel-2. Sus resultados muestran que la detección resulta muy difícil debido a la saturación de los sensores y la confusión introducida por el efecto de la fenología. El quinto capítulo se centra en la clasificación de tipos de bosque basado en una serie temporal de datos Sentinel-1. Se basa en la creación de un conjunto de modelos que describen la relación entre la retrodispersión y el ángulo local de incidencia para un determinado tipo de bosque y fecha concreta. Para cada píxel se calcula el residuo respecto al modelo de cada uno de los tipos de bosque, acumulando dichos residuos a lo largo de la serie temporal. Hecho esto, cada píxel es asignado al tipo de bosque que acumula un menor residuo. Los resultados son prometedores, mostrando que frondosas y coníferas tienen un comportamiento distintivo, y que es posible separar ambos tipos de bosque con un alto grado de acierto. El sexto capítulo está dedicado a la estimación de biomasa utilizando datos Sentinel-1, ALOS PALSAR y regresión Random Forest. Se obtiene un error similar para ambos sensores a pesar de utilizar una banda diferente (band-C vs. -L), con poca reducción en el error cuando ambas bandas se utilizan conjuntamente. Sin embargo, el ajuste de un estimador adaptado a las condiciones locales de Rumanía sí ofreció una reducción de del error al ser comparado con las estimaciones globales de biomasa
    • …
    corecore