5,473 research outputs found

    The Kinematic Properties of the Extended Disks of Spiral Galaxies: A Sample of Edge-On Galaxies

    Full text link
    We present a kinematic study of the outer regions (R_25<R<2 R_25) of 17 edge-on disk galaxies. Using deep long-slit spectroscopy (flux sensitivity a few 10^-19 erg s^-1 cm^-2 arcsec^-2), we search for H-alpha emission, which must be emitted at these flux levels by any accumulation of hydrogen due to the presence of the extragalactic UV background and any other, local source of UV flux. We present results from the individual galaxy spectra and a stacked composite. We detect H-alpha in many cases well beyond R_25 and sometimes as far as 2 R_25. The combination of sensitivity, spatial resolution, and kinematic resolution of this technique thus provides a powerful complement to 21-cm observations. Kinematics in the outer disk are generally disk-like (flat rotation curves, small velocity dispersions) at all radii, and there is no evidence for a change in the velocity dispersion with radius. We place strong limits, few percent, on the existence of counter-rotating gas out to 1.5 R_25. These results suggest that thin disks extend well beyond R_25; however, we also find a few puzzling anomalies. In ESO 323-G033 we find two emission regions that have velocities close to the systemic velocity rather than the expected rotation velocity. These low relative velocities are unlikely to be simply due to projection effects and so suggest that these regions are not on disk-plane, circular orbits. In MCG-01-31-002 we find emission from gas with a large velocity dispersion that is co-rotating with the inner disk.Comment: 18 pages, 14 figures, accepted for publication in Ap

    MEASURING GALAXY MASSES USING GALAXY-GALAXY GRAVITATIONAL LENSING

    Get PDF
    We report a significant detection of weak, tangential distortion of the images of cosmologically distant, faint galaxies due to gravitational lensing by foreground galaxies. A mean image polarisation of =0.011±0.006=0.011\pm 0.006 is measured for 3202 pairs of source galaxies with magnitudes 23<r2423< r \le 24 and lens galaxies with magnitudes 20r2320\le r\le 23. The signal remains strong for lens-source separations \lo 90'', consistent with quasi-isothermal galaxy halos extending to large radii (\go 100h^{-1} kpc). Our observations thus provide the first evidence from weak gravitational lensing of large scale dark halos associated with individual galaxies. The observed polarisation is also consistent with the signal expected on the basis of simulations incorporating measured properties of local galaxies and modest extrapolations of the observed redshift distribution of faint galaxies. From the simulations we derive a best-fit halo circular velocity of V220V\sim 220 km/s and characteristic radial extent of s \go 100h^{-1} kpc. Our best-fit halo parameters imply typical masses for the lens galaxies within a radius of 100h1100h^{-1} kpc on the order of 1.00.7+1.1×1012h1M1.0^{+1.1}_{-0.7}\times 10^{12}h^{-1} M_\odot, in good agreement with recent dynamical estimates of the masses of local spiral galaxies. This is particularly encouraging as the lensing and dynamical mass estimators rely on different sets of assumptions. Contamination of the gravitational lensing signal by a population of tidally distorted satellite galaxies can be ruled out with reasonable confidence. The prospects for corroborating and improving this measurement seem good, especially using deep HST archival data.Comment: uuencoded, compressed PostScript; 26 pages (6 figures included

    Tracing the Peculiar Dark Matter Structure in the Galaxy Cluster CL 0024+17 with Intracluster Stars and Gas

    Full text link
    ICL is believed to originate from the stars stripped from cluster galaxies. They are no longer gravitationally bound to individual galaxies, but to the cluster, and their smooth distribution potentially makes them serve as much denser tracers of the cluster dark matter than the sparsely distributed cluster galaxies. We present our study of the ICL in Cl 0024+17 using both ACS and Subaru data, where we previously reported discovery of a ringlike dark matter structure with gravitational lensing. The ACS images provide much lower sky levels than ground data, and enable us to measure relative variation of surface brightness reliably. This analysis is repeated with the Subaru images to examine if consistent features are recovered despite different reduction scheme and instrumental characteristics. We find that the ICL profile clearly resembles the peculiar mass profile, which stops decreasing at r~50" (~265 kpc) and slowly increases until it turns over at r~75" (~397 kpc). This feature is seen in both ACS and Subaru images for nearly all available passband images while the features are stronger in red filters. The consistency across different filters and instruments strongly rules out the possibility that the feature might come from any residual, uncorrected calibration errors. In addition, our re-analysis of the cluster X-ray data shows that the peculiar mass structure is also indicated by a non-negligible bump in the intracluster gas profile when the geometric center of the dark matter ring, not the peak of the X-ray emission, is chosen as the center of the radial bin. The location of the gas ring is closer to the center by ~15" (~80 kpc), raising an interesting possibility that the ring-like structure is expanding and the gas ring is lagging behind perhaps because of the ram pressure if both features in mass and gas share the same dynamical origin.Comment: Accepted to ApJ for publicatio

    HST/Acs Weak-Lensing and Chandra X-Ray Studies of the High-Redshift Cluster MS 1054-0321

    Full text link
    We present Hubble Space Telescope/Advanced Camera for Surveys (ACS) weak-lensing and Chandra X-ray analyses of MS 1054-0321 at z=0.83, the most distant and X-ray luminous cluster in the Einstein Extended Medium-Sensitivity Survey (EMSS). The high-resolution mass reconstruction through ACS weak-lensing reveals the complicated dark matter substructure in unprecedented detail, characterized by the three dominant mass clumps with the four or more minor satellite groups within the current ACS field. The direct comparison of the mass map with the Chandra X-ray image shows that the eastern weak-lensing substructure is not present in the X-ray image and, more interestingly, the two X-ray peaks are displaced away from the hypothesized merging direction with respect to the corresponding central and western mass clumps, possibly because of ram pressure. In addition, as observed in our previous weak-lensing study of another high-redshift cluster CL 0152-1357 at z=0.84, the two dark matter clumps of MS 1054-0321 seem to be offset from the galaxy counterparts. We examine the significance of these offsets and discuss a possible scenario, wherein the dark matter clumps might be moving ahead of the cluster galaxies. The non-parametric weak-lensing mass modeling gives a projected mass of M(r<1 Mpc)=(1.02+-0.15)x 10^{15} solar mass, where the uncertainty reflects both the statistical error and the cosmic shear effects. Our temperature measurement of T=8.9_{-0.8}^{+1.0} keV utilizing the newest available low-energy quantum efficiency degradation prescription for the Chandra instrument, together with the isothermal beta description of the cluster (r_c=16"+-15" and beta=0.78+-0.08), yields a projected mass of M(r<1 Mpc)=(1.2+-0.2) x 10^{15} solar mass, consistent with the weak-lensing result.Comment: Accepted for publication in apj. Full-resolution version can be downloaded from http://acs.pha.jhu.edu/~mkjee/ms1054.pd

    Modeling Kepler Transit Light Curves as False Positives: Rejection of Blend Scenarios for Kepler-9, and Validation of Kepler-9 d, A Super-earth-size Planet in a Multiple System

    Get PDF
    Light curves from the Kepler Mission contain valuable information on the nature of the phenomena producing the transit-like signals. To assist in exploring the possibility that they are due to an astrophysical false positive, we describe a procedure (BLENDER) to model the photometry in terms of a "blend" rather than a planet orbiting a star. A blend may consist of a background or foreground eclipsing binary (or star-planet pair) whose eclipses are attenuated by the light of the candidate and possibly other stars within the photometric aperture. We apply BLENDER to the case of Kepler-9 (KIC 3323887), a target harboring two previously confirmed Saturn-size planets (Kepler-9 b and Kepler-9 c) showing transit timing variations, and an additional shallower signal with a 1.59 day period suggesting the presence of a super-Earth-size planet. Using BLENDER together with constraints from other follow-up observations we are able to rule out all blends for the two deeper signals and provide independent validation of their planetary nature. For the shallower signal, we rule out a large fraction of the false positives that might mimic the transits. The false alarm rate for remaining blends depends in part (and inversely) on the unknown frequency of small-size planets. Based on several realistic estimates of this frequency, we conclude with very high confidence that this small signal is due to a super-Earth-size planet (Kepler-9 d) in a multiple system, rather than a false positive. The radius is determined to be 1.64^(+0.19)_(–0.14) R_⊕, and current spectroscopic observations are as yet insufficient to establish its mass

    Modeling low order aberrations in laser guide star adaptive optics systems

    Get PDF
    When using a laser guide star (LGS) adaptive optics (AO) system, quasi-static aberrations are observed between the measured wavefronts from the LGS wavefront sensor (WFS) and the natural guide star (NGS) WFS. These LGS aberrations, which can be as much as 1200 nm RMS on the Keck II LGS AO system, arise due to the finite height and structure of the sodium layer. The LGS aberrations vary significantly between nights due to the difference in sodium structure. In this paper, we successfully model these LGS aberrations for the Keck II LGS AO system. We use this model to characterize the LGS aberrations as a function of pupil angle, elevation, sodium structure, uplink tip/tilt error, detector field of view, the number of detector pixels, and seeing. We also employ the model to estimate the LGS aberrations for the Palomar LGS AO system, the planned Keck I and the Thirty Meter Telescope (TMT) LGS AO systems. The LGS aberrations increase with increasing telescope diameter, but are reduced by central projection of the laser compared to side projection

    Kepler's First Rocky Planet: Kepler-10b

    Get PDF
    NASA's Kepler Mission uses transit photometry to determine the frequency of Earth-size planets in or near the habitable zone of Sun-like stars. The mission reached a milestone toward meeting that goal: the discovery of its first rocky planet, Kepler-10b. Two distinct sets of transit events were detected: (1) a 152 ± 4 ppm dimming lasting 1.811 ± 0.024 hr with ephemeris T [BJD] = 2454964.57375^(+0.00060)_(–0.00082) + N * 0.837495^(+0.000004)_(–0.000005) days and (2) a 376 ± 9 ppm dimming lasting 6.86 ± 0.07 hr with ephemeris T [BJD] = 2454971.6761^(+0.0020)_(–0.0023) + N * 45.29485^(+0.00065) _(–0.00076) days. Statistical tests on the photometric and pixel flux time series established the viability of the planet candidates triggering ground-based follow-up observations. Forty precision Doppler measurements were used to confirm that the short-period transit event is due to a planetary companion. The parent star is bright enough for asteroseismic analysis. Photometry was collected at 1 minute cadence for >4 months from which we detected 19 distinct pulsation frequencies. Modeling the frequencies resulted in precise knowledge of the fundamental stellar properties. Kepler-10 is a relatively old (11.9 ± 4.5 Gyr) but otherwise Sun-like main-sequence star with T_(eff) = 5627 ± 44 K, M_⋆ = 0.895 ± 0.060 M_⊙ , and R_⋆ = 1.056 ± 0.021 R_⊙. Physical models simultaneously fit to the transit light curves and the precision Doppler measurements yielded tight constraints on the properties of Kepler-10b that speak to its rocky composition: M_P = 4.56^9+1.17)_(–1.29) M_⊕, R_P = 1.416^(+0.033)_(–0.036) R_⊕, and ρ_P = 8.8^(+2.1)_(–2.9) g cm^(–3). Kepler-10b is the smallest transiting exoplanet discovered to date

    Dynamics of a Massive Binary at Birth

    Get PDF
    Almost all massive stars have bound stellar companions, existing in binaries or higher-order multiples. While binarity is theorized to be an essential feature of how massive stars form, essentially all information about such properties is derived from observations of already formed stars, whose orbital properties may have evolved since birth. Little is known about binarity during formation stages. Here we report high angular resolution observations of 1.3 mm continuum and H30alpha recombination line emission, which reveal a massive protobinary with apparent separation of 180 au at the center of the massive star-forming region IRAS07299-1651. From the line-of-sight velocity difference of 9.5 km/s of the two protostars, the binary is estimated to have a minimum total mass of 18 solar masses, consistent with several other metrics, and maximum period of 570 years, assuming a circular orbit. The H30alpha line from the primary protostar shows kinematics consistent with rotation along a ring of radius of 12 au. The observations indicate that disk fragmentation at several hundred au may have formed the binary, and much smaller disks are feeding the individual protostars.Comment: Published in Nature Astronomy. This is author's version. Full article is available here (https://rdcu.be/brENk). 47 pages, 10 figures, including methods and supplementary informatio
    corecore