857 research outputs found

    The Error Estimates of the Interpolating Element-Free Galerkin Method for Two-Point Boundary Value Problems

    Get PDF
    The interpolating moving least-squares (IMLS) method is discussed in detail, and a simpler formula of the shape function of the IMLS method is obtained. Then, based on the IMLS method and the Galerkin weak form, an interpolating element-free Galerkin (IEFG) method for two-point boundary value problems is presented. The IEFG method has high computing speed and precision. Then error analysis of the IEFG method for two-point boundary value problems is presented. The convergence rates of the numerical solution and its derivatives of the IEFG method are presented. The theories show that, if the original solution is sufficiently smooth and the order of the basis functions is big enough, the solution of the IEFG method and its derivatives are convergent to the exact solutions in terms of the maximum radius of the domains of influence of nodes. For the purpose of demonstration, two selected numerical examples are given to confirm the theories

    A sparse-grid isogeometric solver

    Full text link
    Isogeometric Analysis (IGA) typically adopts tensor-product splines and NURBS as a basis for the approximation of the solution of PDEs. In this work, we investigate to which extent IGA solvers can benefit from the so-called sparse-grids construction in its combination technique form, which was first introduced in the early 90s in the context of the approximation of high-dimensional PDEs. The tests that we report show that, in accordance to the literature, a sparse-grid construction can indeed be useful if the solution of the PDE at hand is sufficiently smooth. Sparse grids can also be useful in the case of non-smooth solutions when some a-priori knowledge on the location of the singularities of the solution can be exploited to devise suitable non-equispaced meshes. Finally, we remark that sparse grids can be seen as a simple way to parallelize pre-existing serial IGA solvers in a straightforward fashion, which can be beneficial in many practical situations.Comment: updated version after revie

    On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond

    Get PDF
    An improved understanding of the divergence-free constraint for the incompressible Navier--Stokes equations leads to the observation that a semi-norm and corresponding equivalence classes of forces are fundamental for their nonlinear dynamics. The recent concept of {\em pressure-robustness} allows to distinguish between space discretisations that discretise these equivalence classes appropriately or not. This contribution compares the accuracy of pressure-robust and non-pressure-robust space discretisations for transient high Reynolds number flows, starting from the observation that in generalised Beltrami flows the nonlinear convection term is balanced by a strong pressure gradient. Then, pressure-robust methods are shown to outperform comparable non-pressure-robust space discretisations. Indeed, pressure-robust methods of formal order kk are comparably accurate than non-pressure-robust methods of formal order 2k2k on coarse meshes. Investigating the material derivative of incompressible Euler flows, it is conjectured that strong pressure gradients are typical for non-trivial high Reynolds number flows. Connections to vortex-dominated flows are established. Thus, pressure-robustness appears to be a prerequisite for accurate incompressible flow solvers at high Reynolds numbers. The arguments are supported by numerical analysis and numerical experiments.Comment: 43 pages, 18 figures, 2 table

    B-Spline based uncertainty quantification for stochastic analysis

    Get PDF
    The consideration of uncertainties has become inevitable in state-of-the-art science and technology. Research in the field of uncertainty quantification has gained much importance in the last decades. The main focus of scientists is the identification of uncertain sources, the determination and hierarchization of uncertainties, and the investigation of their influences on system responses. Polynomial chaos expansion, among others, is suitable for this purpose, and has asserted itself as a versatile and powerful tool in various applications. In the last years, its combination with any kind of dimension reduction methods has been intensively pursued, providing support for the processing of high-dimensional input variables up to now. Indeed, this is also referred to as the curse of dimensionality and its abolishment would be considered as a milestone in uncertainty quantification. At this point, the present thesis starts and investigates spline spaces, as a natural extension of polynomials, in the field of uncertainty quantification. The newly developed method 'spline chaos', aims to employ the more complex, but thereby more flexible, structure of splines to counter harder real-world applications where polynomial chaos fails. Ordinarily, the bases of polynomial chaos expansions are orthogonal polynomials, which are replaced by B-spline basis functions in this work. Convergence of the new method is proved and emphasized by numerical examples, which are extended to an accuracy analysis with multi-dimensional input. Moreover, by solving several stochastic differential equations, it is shown that the spline chaos is a generalization of multi-element Legendre chaos and superior to it. Finally, the spline chaos accounts for solving partial differential equations and results in a stochastic Galerkin isogeometric analysis that contributes to the efficient uncertainty quantification of elliptic partial differential equations. A general framework in combination with an a priori error estimation of the expected solution is provided

    Meshless methods for shear-deformable beams and plates based on mixed weak forms

    Get PDF
    Thin structural theories such as the shear-deformable Timoshenko beam and Reissner-Mindlin plate theories have seen wide use throughout engineering practice to simulate the response of structures with planar dimensions far larger than their thickness dimension. Meshless methods have been applied to construct numerical methods to solve the shear deformable theories. Similarly to the finite element method, meshless methods must be carefully designed to overcome the well-known shear-locking problem. Many successful treatments of shear-locking in the finite element literature are constructed through the application of a mixed weak form. In the mixed weak form the shear stresses are treated as an independent variational quantity in addition to the usual displacement variables. We introduce a novel hybrid meshless-finite element formulation for the Timoshenko beam problem that converges to the stable first-order/zero-order finite element method in the local limit when using maximum entropy meshless basis functions. The resulting formulation is free from the effects shear-locking. We then consider the Reissner-Mindlin plate problem. The shear stresses can be identified as a vector field belonging to the Sobelov space with square integrable rotation, suggesting the use of rotated Raviart-Thomas-Nedelec elements of lowest-order for discretising the shear stress field. This novel formulation is again free from the effects of shear-locking. Finally we consider the construction of a generalised displacement method where the shear stresses are eliminated prior to the solution of the final linear system of equations. We implement an existing technique in the literature for the Stokes problem called the nodal volume averaging technique. To ensure stability we split the shear energy between a part calculated using the displacement variables and the mixed variables resulting in a stabilised weak form. The method then satisfies the stability conditions resulting in a formulation that is free from the effects of shear-locking.Open Acces

    Innovative Approaches to the Numerical Approximation of PDEs

    Get PDF
    This workshop was about the numerical solution of PDEs for which classical approaches, such as the finite element method, are not well suited or need further (theoretical) underpinnings. A prominent example of PDEs for which classical methods are not well suited are PDEs posed in high space dimensions. New results on low rank tensor approximation for those problems were presented. Other presentations dealt with regularity of PDEs, the numerical solution of PDEs on surfaces, PDEs of fractional order, numerical solvers for PDEs that converge with exponential rates, and the application of deep neural networks for solving PDEs
    • …
    corecore