1,320 research outputs found

    Measurement and Modeling of Particle Radiation in Coal Flames

    Get PDF
    This work aims at developing a methodology that can provide information of in-flame particle radiation in industrial-scale flames. The method is based on a combination of experimental and modeling work. The experiments have been performed in the high-temperature zone of a 77 kWth swirling lignite flame. Spectral radiation, total radiative intensity, gas temperature, and gas composition were measured, and the radiative intensity in the furnace was modeled with an axisymmetric cylindrical radiation model using Mie theory for the particle properties and a statistical narrow-band model for the gas properties. The in-flame particle radiation was measured with a Fourier transform infrared (FTIR) spectrometer connected to a water-cooled probe via fiber optics. In the cross-section of the flame investigated, the particles were found to be the dominating source of radiation. Apart from giving information about particle radiation and temperature, the methodology can also provide estimates of the amount of soot radiation and the maximum contribution from soot radiation compared to the total particle radiation. In the center position in the flame, the maximum contribution from soot radiation was estimated to be less than 40% of the particle radiation. As a validation of the methodology, the modeled total radiative intensity was compared to the total intensity measured with a narrow angle radiometer and the agreement in the results was good, supporting the validity of the used approach

    Empirical Measurement and Model Validation of Infrared Spectra of Contaminated Surfaces

    Get PDF
    The goal of this thesis was to validate predicted infrared spectra of liquid contaminated surfaces from a micro-scale bi-directional reflectance distribution function (BRDF) model through the use of empirical measurement. Liquid contaminated surfaces generally require more sophisticated radiometric modeling to numerically describe surface properties. The Digital Image and Remote Sensing Image Generation (DIRSIG) model utilizes radiative transfer modeling to generate synthetic imagery for a variety of applications. Aside from DIRSIG, a micro-scale model known as microDIRSIG has been developed as a rigorous ray tracing physics-based model that could predict the BRDF of geometric surfaces that are defined as micron to millimeter resolution facets. The model offers an extension from the conventional BRDF models by allowing contaminants to be added as geometric objects to a micro-facet surface. This model was validated through the use of Fourier transform infrared spectrometer measurements. A total of 18 different substrate and contaminant combinations were measured and compared against modeled outputs. The substrates used in this experiment were wood and aluminum that contained three different paint finishes. The paint finishes included no paint, Krylon ultra-flat black, and Krylon glossy black. A silicon based oil (SF96) was measured out and applied to each surface to create three different contamination cases for each surface. Radiance in the longwave infrared region of the electromagnetic spectrum was measured by a Design and Prototypes (D\&P) Fourier transform infrared spectrometer and a Physical Sciences Inc. Adaptive Infrared Imaging Spectroradiometer (AIRIS). The model outputs were compared against the measurements quantitatively in both the emissivity and radiance domains. A temperature emissivity separation (TES) algorithm had to be applied to the measured radiance spectra for comparison with the microDIRSIG predicted emissivity spectra. The model predicted emissivity spectra was also forward modeled through a DIRSIG simulation for comparisons to the radiance measurements. The results showed a promising agreement for homogeneous surfaces with liquid contamination that could be well characterized geometrically. Limitations arose in substrates that were modeled as homogeneous surfaces, but had spatially varying artifacts due to uncertainties with contaminant and surface interactions. There is high desire for accurate physics based modeling of liquid contaminated surfaces and this validation framework may be extended to include a wider array of samples for more realistic natural surfaces that are often found in real world scenarios

    Determination and Analysis of the Spectral Emissivity of a Blackbody Simulator Source

    Get PDF
    Blackbody simulator sources used for calibration of electro-optical sensors must be well characterized, especially in regards to source emissivity. Many applications require only the total emissivity to be known, but the motivation behind this present research required the spectral emissivity to be determined. Thus, theoretical and experimental methods for ascertaining the spectral emissivity of a blackbody simulator were investigated. Based on the blackbody simulator cavity geometry and material, the methods of Gouffé, Kelly, and Bartell [1] were used to calculate the theoretical spectral emissivity. The experimental phase of this study involved using two Fourier Transform Infrared (FTIR) instruments to measure the simulator spectral emissivity. A spectral emissometer, called the Optical Properties Measurement System (OPMS) was first used. Then, a spectral reflectometer, called the Scatterometer/Reflectometer (SCAT/R), was used to measure the spectral reflectance of the blackbody simulator cavity. The emissivity was then calculated from the reflectance data using Kirchoff’s Law. An extensive error analysis performed on the experimental emissivity data sets showed the OPMS data to have better quality than the SCAT/R data, with maximum standard deviations of 4.70 x 10-3 and 2.69 x 10-2, respectively. The theoretical and measured emissivities were compared and showed that Kelly’s theory compared the best with the OPMS measurements, with differences on the order of 0.1%. Finally, the measurement uncertainties were translated into an uncertainty in the measured output of the blackbody simulator, which was 2% and 3.2% for the OPMS and SCAT/R respectively
    • …
    corecore