49,249 research outputs found

    The Effect of Quadrature Errors in the Computation of L^2 Piecewise Polynomial Approximations

    Get PDF
    In this paper we investigate the L^2 piecewise polynomial approximation problem. L^2 bounds for the derivatives of the error in approximating sufficiently smooth functions by polynomial splines follow immediately from the analogous results for polynomial spline interpolation. We derive L^2 bounds for the errors introduced by the use of two types of quadrature rules for the numerical computation of L^2 piecewise polynomial approximations. These bounds enable us to present some asymptotic results and to examine the consistent convergence of appropriately chosen sequences of such approximations. Some numerical results are also included

    Sharp error estimates for spline approximation: explicit constants, nn-widths, and eigenfunction convergence

    Full text link
    In this paper we provide a priori error estimates in standard Sobolev (semi-)norms for approximation in spline spaces of maximal smoothness on arbitrary grids. The error estimates are expressed in terms of a power of the maximal grid spacing, an appropriate derivative of the function to be approximated, and an explicit constant which is, in many cases, sharp. Some of these error estimates also hold in proper spline subspaces, which additionally enjoy inverse inequalities. Furthermore, we address spline approximation of eigenfunctions of a large class of differential operators, with a particular focus on the special case of periodic splines. The results of this paper can be used to theoretically explain the benefits of spline approximation under kk-refinement by isogeometric discretization methods. They also form a theoretical foundation for the outperformance of smooth spline discretizations of eigenvalue problems that has been numerically observed in the literature, and for optimality of geometric multigrid solvers in the isogeometric analysis context.Comment: 31 pages, 2 figures. Fixed a typo. Article published in M3A

    A comparison of some numerical methods for the advection-diffusion equation

    Get PDF
    This paper describes a comparison of some numerical methods for solving the advection-diffusion (AD) equation which may be used to describe transport of a pollutant. The one-dimensional advection-diffusion equation is solved by using cubic splines (the natural cubic spline and a ”special” AD cubic spline) to estimate first and second derivatives, and also by solving the same problem using two standard finite difference schemes (the FTCS and Crank-Nicolson methods). Two examples are used for comparison; the numerical results are compared with analytical solutions. It is found that, for the examples studied, the finite difference methods give better point-wise solutions than the spline methods

    Multi-patch discontinuous Galerkin isogeometric analysis for wave propagation: explicit time-stepping and efficient mass matrix inversion

    Full text link
    We present a class of spline finite element methods for time-domain wave propagation which are particularly amenable to explicit time-stepping. The proposed methods utilize a discontinuous Galerkin discretization to enforce continuity of the solution field across geometric patches in a multi-patch setting, which yields a mass matrix with convenient block diagonal structure. Over each patch, we show how to accurately and efficiently invert mass matrices in the presence of curved geometries by using a weight-adjusted approximation of the mass matrix inverse. This approximation restores a tensor product structure while retaining provable high order accuracy and semi-discrete energy stability. We also estimate the maximum stable timestep for spline-based finite elements and show that the use of spline spaces result in less stringent CFL restrictions than equivalent piecewise continuous or discontinuous finite element spaces. Finally, we explore the use of optimal knot vectors based on L2 n-widths. We show how the use of optimal knot vectors can improve both approximation properties and the maximum stable timestep, and present a simple heuristic method for approximating optimal knot positions. Numerical experiments confirm the accuracy and stability of the proposed methods

    Generalizations of the sampling theorem: Seven decades after Nyquist

    Get PDF
    The sampling theorem is one of the most basic and fascinating topics in engineering sciences. The most well-known form is Shannon's uniform-sampling theorem for bandlimited signals. Extensions of this to bandpass signals and multiband signals, and to nonuniform sampling are also well-known. The connection between such extensions and the theory of filter banks in DSP has been well established. This paper presents some of the less known aspects of sampling, with special emphasis on non bandlimited signals, pointwise stability of reconstruction, and reconstruction from nonuniform samples. Applications in multiresolution computation and in digital spline interpolation are also reviewed

    On causal extrapolation of sequences with applications to forecasting

    Full text link
    The paper suggests a method of extrapolation of notion of one-sided semi-infinite sequences representing traces of two-sided band-limited sequences; this features ensure uniqueness of this extrapolation and possibility to use this for forecasting. This lead to a forecasting method for more general sequences without this feature based on minimization of the mean square error between the observed path and a predicable sequence. These procedure involves calculation of this predictable path; the procedure can be interpreted as causal smoothing. The corresponding smoothed sequences allow unique extrapolations to future times that can be interpreted as optimal forecasts.Comment: arXiv admin note: substantial text overlap with arXiv:1111.670

    Innovation Rate Sampling of Pulse Streams with Application to Ultrasound Imaging

    Full text link
    Signals comprised of a stream of short pulses appear in many applications including bio-imaging and radar. The recent finite rate of innovation framework, has paved the way to low rate sampling of such pulses by noticing that only a small number of parameters per unit time are needed to fully describe these signals. Unfortunately, for high rates of innovation, existing sampling schemes are numerically unstable. In this paper we propose a general sampling approach which leads to stable recovery even in the presence of many pulses. We begin by deriving a condition on the sampling kernel which allows perfect reconstruction of periodic streams from the minimal number of samples. We then design a compactly supported class of filters, satisfying this condition. The periodic solution is extended to finite and infinite streams, and is shown to be numerically stable even for a large number of pulses. High noise robustness is also demonstrated when the delays are sufficiently separated. Finally, we process ultrasound imaging data using our techniques, and show that substantial rate reduction with respect to traditional ultrasound sampling schemes can be achieved.Comment: 14 pages, 13 figure
    • …
    corecore