8,892 research outputs found

    High Quality of Service on Video Streaming in P2P Networks using FST-MDC

    Full text link
    Video streaming applications have newly attracted a large number of participants in a distribution network. Traditional client-server based video streaming solutions sustain precious bandwidth provision rate on the server. Recently, several P2P streaming systems have been organized to provide on-demand and live video streaming services on the wireless network at reduced server cost. Peer-to-Peer (P2P) computing is a new pattern to construct disseminated network applications. Typical error control techniques are not very well matched and on the other hand error prone channels has increased greatly for video transmission e.g., over wireless networks and IP. These two facts united together provided the essential motivation for the development of a new set of techniques (error concealment) capable of dealing with transmission errors in video systems. In this paper, we propose an flexible multiple description coding method named as Flexible Spatial-Temporal (FST) which improves error resilience in the sense of frame loss possibilities over independent paths. It introduces combination of both spatial and temporal concealment technique at the receiver and to conceal the lost frames more effectively. Experimental results show that, proposed approach attains reasonable quality of video performance over P2P wireless network.Comment: 11 pages, 8 figures, journa

    Error resilient packet switched H.264 video telephony over third generation networks.

    Get PDF
    Real-time video communication over wireless networks is a challenging problem because wireless channels suffer from fading, additive noise and interference, which translate into packet loss and delay. Since modern video encoders deliver video packets with decoding dependencies, packet loss and delay can significantly degrade the video quality at the receiver. Many error resilience mechanisms have been proposed to combat packet loss in wireless networks, but only a few were specifically designed for packet switched video telephony over Third Generation (3G) networks. The first part of the thesis presents an error resilience technique for packet switched video telephony that combines application layer Forward Error Correction (FEC) with rateless codes, Reference Picture Selection (RPS) and cross layer optimization. Rateless codes have lower encoding and decoding computational complexity compared to traditional error correcting codes. One can use them on complexity constrained hand-held devices. Also, their redundancy does not need to be fixed in advance and any number of encoded symbols can be generated on the fly. Reference picture selection is used to limit the effect of spatio-temporal error propagation. Limiting the effect of spatio-temporal error propagation results in better video quality. Cross layer optimization is used to minimize the data loss at the application layer when data is lost at the data link layer. Experimental results on a High Speed Packet Access (HSPA) network simulator for H.264 compressed standard video sequences show that the proposed technique achieves significant Peak Signal to Noise Ratio (PSNR) and Percentage Degraded Video Duration (PDVD) improvements over a state of the art error resilience technique known as Interactive Error Control (IEC), which is a combination of Error Tracking and feedback based Reference Picture Selection. The improvement is obtained at a cost of higher end-to-end delay. The proposed technique is improved by making the FEC (Rateless code) redundancy channel adaptive. Automatic Repeat Request (ARQ) is used to adjust the redundancy of the Rateless codes according to the channel conditions. Experimental results show that the channel adaptive scheme achieves significant PSNR and PDVD improvements over the static scheme for a simulated Long Term Evolution (LTE) network. In the third part of the thesis, the performance of the previous two schemes is improved by making the transmitter predict when rateless decoding will fail. In this case, reference picture selection is invoked early and transmission of encoded symbols for that source block is aborted. Simulations for an LTE network show that this results in video quality improvement and bandwidth savings. In the last part of the thesis, the performance of the adaptive technique is improved by exploiting the history of the wireless channel. In a Rayleigh fading wireless channel, the RLC-PDU losses are correlated under certain conditions. This correlation is exploited to adjust the redundancy of the Rateless code and results in higher Rateless code decoding success rate and higher video quality. Simulations for an LTE network show that the improvement was significant when the packet loss rate in the two wireless links was 10%. To facilitate the implementation of the proposed error resilience techniques in practical scenarios, RTP/UDP/IP level packetization schemes are also proposed for each error resilience technique. Compared to existing work, the proposed error resilience techniques provide better video quality. Also, more emphasis is given to implementation issues in 3G networks

    MPEG-2 video transmission using the HIPERLAN/2 WLAN standard

    Get PDF

    Optimal packetisation of MPEG-4 using RTP over mobile networks

    Get PDF
    The introduction of third-generation wireless networks should result in real-time mobile video communications becoming a reality. Delivery of such video is likely to be facilitated by the realtime transport protocol (RTP). Careful packetisation of the video data is necessary to ensure the optimal trade-off between channel utilisation and error robustness. Theoretical analyses for two basic schemes of MPEG-4 data encapsulation within RTP packets are presented. Simulations over a GPRS (general packet radio service) network are used to validate the analysis of the most efficient scheme. Finally, a motion adaptive system for deriving MPEG-4 video packet sizes is presented. Further simulations demonstrate the benefits of the adaptive system

    Multiple description video coding for stereoscopic 3D

    Get PDF
    In this paper, we propose an MDC schemes for stereoscopic 3D video. In the literature, MDC has previously been applied in 2D video but not so much in 3D video. The proposed algorithm enhances the error resilience of the 3D video using the combination of even and odd frame based MDC while retaining good temporal prediction efficiency for video over error-prone networks. Improvements are made to the original even and odd frame MDC scheme by adding a controllable amount of side information to improve frame interpolation at the decoder. The side information is also sent according to the video sequence motion for further improvement. The performance of the proposed algorithms is evaluated in error free and error prone environments especially for wireless channels. Simulation results show improved performance using the proposed MDC at high error rates compared to the single description coding (SDC) and the original even and odd frame MDC

    Robust image and video coding with pyramid vector quantisation

    Get PDF
    corecore