320 research outputs found

    Complex Neural Networks for Audio

    Get PDF
    Audio is represented in two mathematically equivalent ways: the real-valued time domain (i.e., waveform) and the complex-valued frequency domain (i.e., spectrum). There are advantages to the frequency-domain representation, e.g., the human auditory system is known to process sound in the frequency-domain. Furthermore, linear time-invariant systems are convolved with sources in the time-domain, whereas they may be factorized in the frequency-domain. Neural networks have become rather useful when applied to audio tasks such as machine listening and audio synthesis, which are related by their dependencies on high quality acoustic models. They ideally encapsulate fine-scale temporal structure, such as that encoded in the phase of frequency-domain audio, yet there are no authoritative deep learning methods for complex audio. This manuscript is dedicated to addressing the shortcoming. Chapter 2 motivates complex networks by their affinity with complex-domain audio, while Chapter 3 contributes methods for building and optimizing complex networks. We show that the naive implementation of Adam optimization is incorrect for complex random variables and show that selection of input and output representation has a significant impact on the performance of a complex network. Experimental results with novel complex neural architectures are provided in the second half of this manuscript. Chapter 4 introduces a complex model for binaural audio source localization. We show that, like humans, the complex model can generalize to different anatomical filters, which is important in the context of machine listening. The complex model\u27s performance is better than that of the real-valued models, as well as real- and complex-valued baselines. Chapter 5 proposes a two-stage method for speech enhancement. In the first stage, a complex-valued stochastic autoencoder projects complex vectors to a discrete space. In the second stage, long-term temporal dependencies are modeled in the discrete space. The autoencoder raises the performance ceiling for state of the art speech enhancement, but the dynamic enhancement model does not outperform other baselines. We discuss areas for improvement and note that the complex Adam optimizer improves training convergence over the naive implementation

    How to describe a cell: a path to automated versatile characterization of cells in imaging data

    Get PDF
    A cell is the basic functional unit of life. Most ulticellular organisms, including animals, are composed of a variety of different cell types that fulfil distinct roles. Within an organism, all cells share the same genome, however, their diverse genetic programs lead them to acquire different molecular and anatomical characteristics. Describing these characteristics is essential for understanding how cellular diversity emerged and how it contributes to the organism function. Probing cellular appearance by microscopy methods is the original way of describing cell types and the main approach to characterise cellular morphology and position in the organism. Present cutting-edge microscopy techniques generate immense amounts of data, requiring efficient automated unbiased methods of analysis. Not only can such methods accelerate the process of scientific discovery, they should also facilitate large-scale systematic reproducible analysis. The necessity of processing big datasets has led to development of intricate image analysis pipelines, however, they are mostly tailored to a particular dataset and a specific research question. In this thesis I aimed to address the problem of creating more general fully-automated ways of describing cells in different imaging modalities, with a specific focus on deep neural networks as a promising solution for extracting rich general-purpose features from the analysed data. I further target the problem of integrating multiple data modalities to generate a detailed description of cells on the whole-organism level. First, on two examples of cell analysis projects, I show how using automated image analysis pipelines and neural networks in particular, can assist characterising cells in microscopy data. In the first project I analyse a movie of drosophila embryo development to elucidate the difference in myosin patterns between two populations of cells with different shape fate. In the second project I develop a pipeline for automatic cell classification in a new imaging modality to show that the quality of the data is sufficient to tell apart cell types in a volume of mouse brain cortex. Next, I present an extensive collaborative effort aimed at generating a whole-body multimodal cell atlas of a three-segmented Platynereis dumerilii worm, combining high resolution morphology and gene expression. To generate a multi-sided description of cells in the atlas I create a pipeline for assigning coherent denoised gene expression profiles, obtained from spatial gene expression maps, to cells segmented in the EM volume. Finally, as the main project of this thesis, I focus on extracting comprehensive unbiased cell morphology features from an EM volume of Platynereis dumerilii. I design a fully unsupervised neural network pipeline for extracting rich morphological representations that enable grouping cells into morphological cell classes with characteristic gene expression. I further show how such descriptors could be used to explore the morphological diversity of cells, tissues and organs in the dataset

    Understanding Physical Processes in Describing a State of Consciousness: A Review

    Full text link
    The way we view the reality of nature, including ourselves, depend on consciousness.It also defines the identity of the person, since we know people in terms of their experiences. In general, consciousness defines human existence in this universe. Furthermore, consciousness is associated with the most debated problems in physics such as the notion of observation, observer,in the measurement problem. However,its nature, occurrence mechanism in the brain and the definite universal locality of the consciousness are not clearly known. Due to this consciousness is considered asan essential unresolved scientific problem of the current era.Here, we review the physical processes which are associated in tackling these challenges. Firstly, we discuss the association of consciousness with transmission of signals in the brain, chain of events, quantum phenomena process and integrated information. We also highlight the roles of structure of matter,field, and the concept of universality towards understanding consciousness. Finally, we propose further studies for achieving better understanding of consciousness.Comment: 45, 0

    Irish Machine Vision and Image Processing Conference Proceedings 2017

    Get PDF

    Center for Space Microelectronics Technology 1988-1989 technical report

    Get PDF
    The 1988 to 1989 Technical Report of the JPL Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the center. Listed are 321 publications, 282 presentations, and 140 new technology reports and patents

    All-optical interrogation of neural circuits in behaving mice

    Get PDF
    Recent advances combining two-photon calcium imaging and two-photon optogenetics with computer-generated holography now allow us to read and write the activity of large populations of neurons in vivo at cellular resolution and with high temporal resolution. Such 'all-optical' techniques enable experimenters to probe the effects of functionally defined neurons on neural circuit function and behavioral output with new levels of precision. This greatly increases flexibility, resolution, targeting specificity and throughput compared with alternative approaches based on electrophysiology and/or one-photon optogenetics and can interrogate larger and more densely labeled populations of neurons than current voltage imaging-based implementations. This protocol describes the experimental workflow for all-optical interrogation experiments in awake, behaving head-fixed mice. We describe modular procedures for the setup and calibration of an all-optical system (~3 h), the preparation of an indicator and opsin-expressing and task-performing animal (~3-6 weeks), the characterization of functional and photostimulation responses (~2 h per field of view) and the design and implementation of an all-optical experiment (achievable within the timescale of a normal behavioral experiment; ~3-5 h per field of view). We discuss optimizations for efficiently selecting and targeting neuronal ensembles for photostimulation sequences, as well as generating photostimulation response maps from the imaging data that can be used to examine the impact of photostimulation on the local circuit. We demonstrate the utility of this strategy in three brain areas by using different experimental setups. This approach can in principle be adapted to any brain area to probe functional connectivity in neural circuits and investigate the relationship between neural circuit activity and behavior

    3D Reconstruction of Optical Diffraction Tomography Based on a Neural Network Model

    Get PDF
    Optical tomography has been widely investigated for biomedical imaging applications. In recent years, it has been combined with digital holography and has been employed to produce high quality images of phase objects such as cells. In this Thesis, we look into some of the newest optical Diffraction Tomography (DT) based techniques to solve Three-Dimensional (3D) reconstruction problems and discuss and compare some of the leading ideas and papers. Then we propose a neural-network-based algorithm to solve this problem and apply it on both synthetic and biological samples. Conventional phase tomography with coherent light and off axis recording is performed. The Beam Propagation Method (BPM) is used to model scattering and each x-y plane is modeled by a layer of neurons in the BPM. The network's output (simulated data) is compared to the experimental measurements and the error is used for correcting the weights of the neurons (the refractive indices of the nodes) using standard error back-propagation techniques. The proposed algorithm is detailed and investigated. Then, we look into resolution-conserving regularization and discuss a method for selecting regularizing parameters. In addition, the local minima and phase unwrapping problems are discussed and ways of avoiding them are investigated. It is shown that the proposed learning tomography (LT) achieves better performance than other techniques such as, DT especially when insufficient number or incomplete set of measurements is available. We also explore the role of regularization in obtaining higher fidelity images without losing resolution. It is experimentally shown that due to overcoming multiple scattering, the LT reconstruction greatly outperforms the DT when the sample contains two or more layers of cells or beads. Then, reconstruction using intensity measurements is investigated. 3D reconstruction of a live cell during apoptosis is presented in a time-lapse format. At the end, we present a final comparison with leading papers and commercially available systems. It is shown that -compared to other existing algorithms- the results of the proposed method have better quality. In particular, parasitic granular structures and the missing cone artifact are improved. Overall, the perspectives of our approach are pretty rich for high-resolution tomographic imaging in a range of practical applications

    All-optical interrogation of neural circuits during behaviour

    Get PDF
    This thesis explores the fundamental question of how patterns of neural activity encode information and guide behaviour. To address this, one needs three things: a way to record neural activity so that one can correlate neuronal responses with environmental variables; a flexible and specific way to influence neural activity so that one can modulate the variables that may underlie how information is encoded; a robust behavioural paradigm that allows one to assess how modulation of both environmental and neural variables modify behaviour. Techniques combining all three would be transformative for investigating which features of neural activity, and which neurons, most influence behavioural output. Previous electrical and optogenetic microstimulation studies have told us much about the impact of spatially or genetically defined groups of neurons, however they lack the flexibility to probe the contribution of specific, functionally defined subsets. In this thesis I leverage a combination of existing technologies to approach this goal. I combine two-photon calcium imaging with two-photon optogenetics and digital holography to generate an “all-optical” method for simultaneous reading and writing of neural activity in vivo with high spatio-temporal resolution. Calcium imaging allows for cellular resolution recordings from neural populations. Two-photon optogenetics allows for targeted activation of individual cells. Digital holography, using spatial light modulators (SLMs), allows for simultaneous photostimulation of tens to hundreds of neurons in arbitrary spatial locations. Taken together, I demonstrate that this method allows one to map the functional signature of neurons in superficial mouse barrel cortex and to target photostimulation to functionally-defined subsets of cells. I develop a suite of software that allows for quick, intuitive execution of such experiments and I combine this with a behavioural paradigm testing the effect of targeted perturbations on behaviour. In doing so, I demonstrate that animals are able to reliably detect the targeted activation of tens of neurons, with some sensitive to as few as five cortical cells. I demonstrate that such learning can be specific to targeted cells, and that the lower bound of perception shifts with training. The temporal structure of such perturbations had little impact on behaviour, however different groups of neurons drive behaviour to different extents. In order to probe which characteristics underly such variation, I tested whether the sensory response strength or correlation structure of targeted ensembles influenced their behavioural salience. Whilst these final experiments were inconclusive, they demonstrate their feasibility and provide us with some key actionable improvements that could further strengthen the all-optical approach. This thesis therefore represents a significant step forward towards the goal of combining high resolution readout and perturbation of neural activity with behaviour in order to investigate which features of the neural code are behaviourally relevant

    Ultrafast Radiographic Imaging and Tracking: An overview of instruments, methods, data, and applications

    Full text link
    Ultrafast radiographic imaging and tracking (U-RadIT) use state-of-the-art ionizing particle and light sources to experimentally study sub-nanosecond dynamic processes in physics, chemistry, biology, geology, materials science and other fields. These processes, fundamental to nuclear fusion energy, advanced manufacturing, green transportation and others, often involve one mole or more atoms, and thus are challenging to compute by using the first principles of quantum physics or other forward models. One of the central problems in U-RadIT is to optimize information yield through, e.g. high-luminosity X-ray and particle sources, efficient imaging and tracking detectors, novel methods to collect data, and large-bandwidth online and offline data processing, regulated by the underlying physics, statistics, and computing power. We review and highlight recent progress in: a.) Detectors; b.) U-RadIT modalities; c.) Data and algorithms; and d.) Applications. Hardware-centric approaches to U-RadIT optimization are constrained by detector material properties, low signal-to-noise ratio, high cost and long development cycles of critical hardware components such as ASICs. Interpretation of experimental data, including comparisons with forward models, is frequently hindered by sparse measurements, model and measurement uncertainties, and noise. Alternatively, U-RadIT makes increasing use of data science and machine learning algorithms, including experimental implementations of compressed sensing. Machine learning and artificial intelligence approaches, refined by physics and materials information, may also contribute significantly to data interpretation, uncertainty quantification and U-RadIT optimization.Comment: 51 pages, 31 figures; Overview of ultrafast radiographic imaging and tracking as a part of ULITIMA 2023 conference, Mar. 13-16,2023, Menlo Park, CA, US

    Augmented Reality and Its Application

    Get PDF
    Augmented Reality (AR) is a discipline that includes the interactive experience of a real-world environment, in which real-world objects and elements are enhanced using computer perceptual information. It has many potential applications in education, medicine, and engineering, among other fields. This book explores these potential uses, presenting case studies and investigations of AR for vocational training, emergency response, interior design, architecture, and much more
    • …
    corecore