3,484 research outputs found

    Can I Have Your Attention? Implications of the Research on Distractions and Multitasking for Reference Librarians

    Get PDF
    The media have identified the last decade as “the age of distraction.” People today find it harder to work on long, sustained tasks because distractions are eroding their attention span, fostering a culture of discontinuity. Fields as diverse as psychology, business, education, human-computer interaction, and communication studies have produced a wealth of studies on interruptions, distractions, and multitasking–research that has important implications for reference librarians. The nature of our jobs invites interruptions by the public, requires familiarity with the latest technology, stimulates curiosity about a broad range of subjects, and demands adeptness at multitasking–all factors which can atomize attention

    Hyperswitch communication network

    Get PDF
    The Hyperswitch Communication Network (HCN) is a large scale parallel computer prototype being developed at JPL. Commercial versions of the HCN computer are planned. The HCN computer being designed is a message passing multiple instruction multiple data (MIMD) computer, and offers many advantages in price-performance ratio, reliability and availability, and manufacturing over traditional uniprocessors and bus based multiprocessors. The design of the HCN operating system is a uniquely flexible environment that combines both parallel processing and distributed processing. This programming paradigm can achieve a balance among the following competing factors: performance in processing and communications, user friendliness, and fault tolerance. The prototype is being designed to accommodate a maximum of 64 state of the art microprocessors. The HCN is classified as a distributed supercomputer. The HCN system is described, and the performance/cost analysis and other competing factors within the system design are reviewed

    Task errors by emergency physicians are associated with interruptions, multitasking, fatigue and working memory capacity: a prospective, direct observation study

    Get PDF
    Background Interruptions and multitasking have been demonstrated in experimental studies to reduce individuals’ task performance. These behaviours are frequently used by clinicians in high-workload, dynamic clinical environments, yet their effects have rarely been studied. Objective To assess the relative contributions of interruptions and multitasking by emergency physicians to prescribing errors. Methods 36 emergency physicians were shadowed over 120 hours. All tasks, interruptions and instances of multitasking were recorded. Physicians’ working memory capacity (WMC) and preference for multitasking were assessed using the Operation Span Task (OSPAN) and Inventory of Polychronic Values. Following observation, physicians were asked about their sleep in the previous 24 hours. Prescribing errors were used as a measure of task performance. We performed multivariate analysis of prescribing error rates to determine associations with interruptions and multitasking, also considering physician seniority, age, psychometric measures, workload and sleep. Results Physicians experienced 7.9 interruptions/hour. 28 clinicians were observed prescribing 239 medication orders which contained 208 prescribing errors. While prescribing, clinicians were interrupted 9.4 times/hour. Error rates increased significantly if physicians were interrupted (rate ratio (RR) 2.82; 95% CI 1.23 to 6.49) or multitasked (RR 1.86; 95% CI 1.35 to 2.56) while prescribing. Having below-average sleep showed a >15-fold increase in clinical error rate (RR 16.44; 95% CI 4.84 to 55.81). WMC was protective against errors; for every 10-point increase on the 75-point OSPAN, a 19% decrease in prescribing errors was observed. There was no effect of polychronicity, workload, physician gender or above-average sleep on error rates. Conclusion Interruptions, multitasking and poor sleep were associated with significantly increased rates of prescribing errors among emergency physicians. WMC mitigated the negative influence of these factors to an extent. These results confirm experimental findings in other fields and raise questions about the acceptability of the high rates of multitasking and interruption in clinical environments

    Driving and Multitasking:The Good, the Bad, and the Dangerous

    Get PDF
    Previous research has shown that multitasking can have a positive or a negative influence on driving performance. The aim of this study was to determine how the interaction between driving circumstances and cognitive requirements of secondary tasks affect a driver’s ability to control a car. We created a driving simulator paradigm where participants had to perform one of two scenarios: one with no traffic in the driver’s lane, and one with substantial traffic in both lanes, some of which had to be overtaken. Four different secondary task conditions were combined with these driving scenarios. In both driving scenarios, using a tablet resulted in the worst, most dangerous, performance, while passively listening to the radio or answering questions for a radio quiz led to the best driving performance. Interestingly, driving as a single task did not produce better performance than driving in combination with one of the radio tasks, and even tended to be slightly worse. These results suggest that drivers switch to internally focused secondary tasks when nothing else is available during monotonous or repetitive driving environments. This mind wandering potentially has a stronger interference effect with driving than non-visual secondary tasks

    Cognitive workload measurement and modeling under divided attention

    Get PDF
    Motorists often engage in secondary tasks unrelated to driving that increase cognitive workload, resulting in fatal crashes and injuries. An International Standards Organization method for measuring a driver's cognitive workload, the detection response task (DRT), correlates well with driving outcomes, but investigation of its putative theoretical basis in terms of finite attention capacity remains limited. We address this knowledge gap using evidence-accumulation modeling of simple and choice versions of the DRT in a driving scenario. Our experiments demonstrate how dual-task load affects the parameters of evidence-accumulation models. We found that the cognitive workload induced by a secondary task (counting backward by 3s) reduced the rate of evidence accumulation, consistent with rates being sensitive to limited-capacity attention. We also found a compensatory increase in the amount of evidence required for a response and a small speeding in the time for nondecision processes. The International Standards Organization version of the DRT was found to be most sensitive to cognitive workload. A Wald-distributed evidence-accumulation model augmented with a parameter measuring response omissions provided a parsimonious measure of the underlying causes of cognitive workload in this task. This work demonstrates that evidence-accumulation modeling can accurately represent data produced by cognitive workload measurements, reproduce the data through simulation, and provide supporting evidence for the cognitive processes underlying cognitive workload. Our results provide converging evidence that the DRT method is sensitive to dynamic fluctuations in limited-capacity attention

    Anterior Prefrontal Cortex Contributes to Action Selection through Tracking of Recent Reward Trends

    Get PDF
    The functions of prefrontal cortex remain enigmatic, especially for its anterior sectors, putatively ranging from planning to self-initiated behavior, social cognition, task switching, and memory. A predominant current theory regarding the most anterior sector, the frontopolar cortex (FPC), is that it is involved in exploring alternative courses of action, but the detailed causal mechanisms remain unknown. Here we investigated this issue using the lesion method, together with a novel model-based analysis. Eight patients with anterior prefrontal brain lesions including the FPC performed a four-armed bandit task known from neuroimaging studies to activate the FPC. Model-based analyses of learning demonstrated a selective deficit in the ability to extrapolate the most recent trend, despite an intact general ability to learn from past rewards. Whereas both brain-damaged and healthy controls used comparisons between the two most recent choice outcomes to infer trends that influenced their decision about the next choice, the group with anterior prefrontal lesions showed a complete absence of this component and instead based their choice entirely on the cumulative reward history. Given that the FPC is thought to be the most evolutionarily recent expansion of primate prefrontal cortex, we suggest that its function may reflect uniquely human adaptations to select and update models of reward contingency in dynamic environments

    Unveiling residual, spontaneous recovery from subtle hemispatial neglect three years after stroke

    Get PDF
    A common and disabling consequence of stroke is the difficulty in processing contralesional space (i.e., hemispatial neglect). According to paper-and-pencil tests, neglect remits or stabilizes in severity within a few months after a brain injury. This arbitrary temporal limit, however, is at odds with neglect's well-known dependency on task-sensitivity. The present study tested the hypothesis that the putative early resolution of neglect might be due to the insensitivity of testing methods rather than to the lack of spontaneous recovery at later stages. A right hemisphere stroke patient was studied longitudinally for 3 years. According to paper-and-pencil tests the patient showed no symptom of hemispatial neglect 1 month post stroke. Awareness of spatially lateralized visual targets was then assessed by means of computer based single-and dual tasks requiring an additional top-down deployment of attention for the parallel processing of visual or auditory stimuli. Errorless performance at computer-based tasks was reached at month 12 and maintained until month 29 after stroke. A bottom-up manipulation was then implemented by reducing target diameter. Following this change, more than 50% of contralesional targets were omitted, mostly under dual-tasking. At months 40 and 41 the same task revealed a significant (but not complete) reduction in the number of contralesional omissions. lpsilesional targets were, in contrast, still errorless detected. The coupling of a bottom-up (target change) and a top-down (dual-tasking) manipulation revealed the presence of a long-lasting spontaneous recovery from contralesional spatial awareness deficits. In contrast, neither manipulation was effective when implemented separately. After having excluded the potential confound of practice effects, it was concluded that not only the presence but also the time course of hemispatial neglect strongly depends on the degree of attentional engagement required by the task
    • …
    corecore