17,404 research outputs found

    Optical-inertia space sextant for an advanced space navigation system, phase B

    Get PDF
    Optical-inertia space sextant for advanced space navigation syste

    SIRU development. Volume 1: System development

    Get PDF
    A complete description of the development and initial evaluation of the Strapdown Inertial Reference Unit (SIRU) system is reported. System development documents the system mechanization with the analytic formulation for fault detection and isolation processing structure; the hardware redundancy design and the individual modularity features; the computational structure and facilities; and the initial subsystem evaluation results

    Thermal Characterization of Next-Generation Workloads on Heterogeneous MPSoCs

    Get PDF
    Next-generation High-Performance Computing (HPC) applications need to tackle outstanding computational complexity while meeting latency and Quality-of-Service constraints. Heterogeneous Multi-Processor Systems-on-Chip (MPSoCs), equipped with a mix of general-purpose cores and reconfigurable fabric for custom acceleration of computational blocks, are key in providing the flexibility to meet the requirements of next-generation HPC. However, heterogeneity brings new challenges to efficient chip thermal management. In this context, accurate and fast thermal simulators are becoming crucial to understand and exploit the trade-offs brought by heterogeneous MPSoCs. In this paper, we first thermally characterize a next-generation HPC workload, the online video transcoding application, using a highly-accurate Infra-Red (IR) microscope. Second, we extend the 3D-ICE thermal simulation tool with a new generic heat spreader model capable of accurately reproducing package surface temperature, with an average error of 6.8% for the hot spots of the chip. Our model is used to characterize the thermal behaviour of the online transcoding application when running on a heterogeneous MPSoC. Moreover, by using our detailed thermal system characterization we are able to explore different application mappings as well as the thermal limits of such heterogeneous platforms

    Design and Development of a High-Performance Quadrotor Control Architecture Based on Feedback Linearization

    Get PDF
    The purpose of this thesis is to outline the development of a high-performance quadrotor control system for an AscTec Hummingbird quadrotor using direct motor speed control within a Vicon motion capture system environment. A Ground Control Station (GCS) acts as a user interface for selecting flight patterns and displaying sensor values. An on-board Intel Edison embedded Linux computer acts as the quadrotor\u27s controller. The Vicon system measures the quadrotor\u27s position and orientation, while the Hummingbird\u27s stock AscTec Autopilot board provides inertial measurements and receives motor speed commands. Based on the flight pattern set by the GCS, smooth and di erentiable trajectories are generated. A control program was written for the Edison to obtain measurements, receive flight pattern commands, perform state estimation, calculate control laws, send motor speed commands to the Autopilot board, and log values. The program was written as a multithreaded C++ program for increased performance. A feedback linearization of the quadrotor\u27s dynamics was performed to account for its nonlinearities. A controller structure designed to ensure exponential Lyapunov stability was applied to the input-output linearized dynamics. The simplex method was used to aid the controller in pushing the Hummingbird\u27s actuators for aggressive maneuvers within set input limitations. The Edison\u27s Wi-Fi capabilities enable it to contact the Vicon server directly for position and orientation measurements. Accelerations and angular velocities are measured by the Autopilot\u27s inertial measurement unit (IMU). A quick state estimation process was implemented to filter the measured states, and state prediction was used to compensate for latency in the system. A custom circuit board and communication framework was designed and assembled for interfacing the Edison with the Autopilot. The custom communication framework allowed for a 16 times speed improvement over the default settings while bypassing the stock wireless communication\u27s inherently unreliable timing. The Hummingbird\u27s physical properties, such as propeller performance and rotational inertias, were characterized via static and step response experiments. The control system\u27s flight performance was evaluated through simulation and experimental tests

    Advanced flight control system study

    Get PDF
    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed

    Development of a Novel Handheld Device for Active Compensation of Physiological Tremor

    Get PDF
    In microsurgery, the human hand imposes certain limitations in accurately positioning the tip of a device such as scalpel. Any errors in the motion of the hand make microsurgical procedures difficult and involuntary motions such as hand tremors can make some procedures significantly difficult to perform. This is particularly true in the case of vitreoretinal microsurgery. The most familiar source of involuntary motion is physiological tremor. Real-time compensation of tremor is, therefore, necessary to assist surgeons to precisely position and manipulate the tool-tip to accurately perform a microsurgery. In this thesis, a novel handheld device (AID) is described for compensation of physiological tremor in the hand. MEMS-based accelerometers and gyroscopes have been used for sensing the motion of the hand in six degrees of freedom (DOF). An augmented state complementary Kalman filter is used to calculate 2 DOF orientation. An adaptive filtering algorithm, band-limited Multiple Fourier linear combiner (BMFLC), is used to calculate the tremor component in the hand in real-time. Ionic Polymer Metallic Composites (IPMCs) have been used as actuators for deflecting the tool-tip to compensate for the tremor

    Error resilience and concealment techniques for high-efficiency video coding

    Get PDF
    This thesis investigates the problem of robust coding and error concealment in High Efficiency Video Coding (HEVC). After a review of the current state of the art, a simulation study about error robustness, revealed that the HEVC has weak protection against network losses with significant impact on video quality degradation. Based on this evidence, the first contribution of this work is a new method to reduce the temporal dependencies between motion vectors, by improving the decoded video quality without compromising the compression efficiency. The second contribution of this thesis is a two-stage approach for reducing the mismatch of temporal predictions in case of video streams received with errors or lost data. At the encoding stage, the reference pictures are dynamically distributed based on a constrained Lagrangian rate-distortion optimization to reduce the number of predictions from a single reference. At the streaming stage, a prioritization algorithm, based on spatial dependencies, selects a reduced set of motion vectors to be transmitted, as side information, to reduce mismatched motion predictions at the decoder. The problem of error concealment-aware video coding is also investigated to enhance the overall error robustness. A new approach based on scalable coding and optimally error concealment selection is proposed, where the optimal error concealment modes are found by simulating transmission losses, followed by a saliency-weighted optimisation. Moreover, recovery residual information is encoded using a rate-controlled enhancement layer. Both are transmitted to the decoder to be used in case of data loss. Finally, an adaptive error resilience scheme is proposed to dynamically predict the video stream that achieves the highest decoded quality for a particular loss case. A neural network selects among the various video streams, encoded with different levels of compression efficiency and error protection, based on information from the video signal, the coded stream and the transmission network. Overall, the new robust video coding methods investigated in this thesis yield consistent quality gains in comparison with other existing methods and also the ones implemented in the HEVC reference software. Furthermore, the trade-off between coding efficiency and error robustness is also better in the proposed methods

    High-speed civil transport flight- and propulsion-control technological issues

    Get PDF
    Technology advances required in the flight and propulsion control system disciplines to develop a high speed civil transport (HSCT) are identified. The mission and requirements of the transport and major flight and propulsion control technology issues are discussed. Each issue is ranked and, for each issue, a plan for technology readiness is given. Certain features are unique and dominate control system design. These features include the high temperature environment, large flexible aircraft, control-configured empennage, minimizing control margins, and high availability and excellent maintainability. The failure to resolve most high-priority issues can prevent the transport from achieving its goals. The flow-time for hardware may require stimulus, since market forces may be insufficient to ensure timely production. Flight and propulsion control technology will contribute to takeoff gross weight reduction. Similar technology advances are necessary also to ensure flight safety for the transport. The certification basis of the HSCT must be negotiated between airplane manufacturers and government regulators. Efficient, quality design of the transport will require an integrated set of design tools that support the entire engineering design team
    • …
    corecore