1,139 research outputs found

    Wireless-Powered Communication Assisted by Two-Way Relay with Interference Alignment Underlaying Cognitive Radio Network

    Full text link
    This study investigates the outage performance of an under-laying wireless-powered secondary system that reuses the primary users (PU) spectrum in a multiple-input multiple-output (MIMO) cognitive radio (CR) network. Each secondary user (SU) harvests energy and receives information simultaneously by applying power splitting (PS) protocol. The communication between SUs is aided by a two-way (TW) decode and forward (DF) relay. We formulate a problem to design the PS ratios at SUs, the power control factor at the secondary relay, and beamforming matrices at all nodes to minimize the secondary network's outage probability. To address this problem, we propose a two-step solution. The first step establishes closedform expressions for the PS ratios at each SU and secondary relay's power control factor. Furthermore, in the second step, interference alignment (IA) is used to design proper precoding and decoding matrices for managing the interference between secondary and primary networks. We choose IA matrices based on the minimum mean square error (MMSE) iterative algorithm. The simulation results demonstrate a significant decrease in the outage probability for the proposed scheme compared to the benchmark schemes, with an average reduction of more than two orders of magnitude achieved

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Application of Smart Antenna Technologies in Simultaneous Wireless Information and Power Transfer

    Full text link
    Simultaneous wireless information and power transfer (SWIPT) is a promising solution to increase the lifetime of wireless nodes and hence alleviate the energy bottleneck of energy constrained wireless networks. As an alternative to conventional energy harvesting techniques, SWIPT relies on the use of radio frequency signals, and is expected to bring some fundamental changes to the design of wireless communication networks. This article focuses on the application of advanced smart antenna technologies, including multiple-input multiple-output and relaying techniques, to SWIPT. These smart antenna technologies have the potential to significantly improve the energy efficiency and also the spectral efficiency of SWIPT. Different network topologies with single and multiple users are investigated, along with some promising solutions to achieve a favorable trade-off between system performance and complexity. A detailed discussion of future research challenges for the design of SWIPT systems is also provided
    • …
    corecore