55 research outputs found

    Performance analysis of ATM/DQDB interworking

    Get PDF

    Robustness of bus overlays in optical networks

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 53-56).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Local area networks (LANs) nowadays use optical fiber as the medium of communication. This fiber is used to connect a collection of electro-optic nodes which form network clouds. A network cloud is a distribution network that connects several external nodes to the backbone, and often takes the form of a star or tree. Optical stars and trees have expensive and inefficient recovery schemes, and as a result, are not attractive options when designing networks. In order to solve this problem, we introduce a virtual topology that makes use of the robustness that is inherently present in a metropolitan area network (MAN) or wide area network (WAN) (long haul network). The virtual topology uses a folded bus scheme and includes some of the elements of the real topology (architecture). By optically bypassing some of the router/switch nodes in the physical architecture, the virtual topology yields better recovery performance and more efficient systems (with respect to cost related to bandwidth and recoverability). We present a bus overlay which uses simple access nodes and is robust to single failures. Our architecture allows the use of existing optical backbone infrastructure. We consider a linear folded bus architecture and introduce a T-shaped folded bus. Although buses are generally not able to recover from failures, we propose a loopback approach. Our approach allows optical bypass of some routers during normal operation, thus reducing the load on routers, but makes use of routers in case of failures. We analyze the behavior of our linear and T-shaped systems under average use and failure conditions. We show that certain simple characteristics of the traffic matrix give meaningful performance characterization. We show that our architecture provides solutions which limit loads on the router.by Ari Levon Libarikian.S.M

    Medium access control mechanisms for high speed metropolitan area networks

    Get PDF
    In this dissertation novel Medium Access Control mechanisms for High Speed Metropolitan Area networks are proposed and their performance is investigated under the presence of single and multiple priority classes of traffic. The proposed mechanisms are based on the Distributed Queue Dual Bus network, which has been adopted by the IEEE standardization committee as the 802.6 standard for Metropolitan Area Networks, and address most of its performance limitations. First, the Rotating Slot Generator scheme is introduced which uses the looped bus architecture that has been proposed for the 802.6 network. According to this scheme the responsibility for generating slots moves periodically from station to station around the loop. In this way, the positions of the stations relative to the slot generator change continuously, and therefore, there are no favorable locations on the busses. Then, two variations of a new bandwidth balancing mechanism, the NSW_BWB and ITU_NSW are introduced. Their main advantage is that their operation does not require the wastage of channel slots and for this reason they can converge very fast to the steady state, where the fair bandwidth allocation is achieved. Their performance and their ability to support multiple priority classes of traffic are thoroughly investigated. Analytic estimates for the stations\u27 throughputs and average segment delays are provided. Moreover, a novel, very effective priority mechanism is introduced which can guarantee almost immediate access for high priority traffic, regardless of the presence of lower priority traffic. Its performance is thoroughly investigated and its ability to support real time traffic, such as voice and video, is demonstrated. Finally, the performance under the presence of erasure nodes of the various mechanisms that have been proposed in this dissertation is examined and compared to the corresponding performance of the most prominent existing mechanisms

    Adaptive Maximums of Random Variables for Network Simulations

    Get PDF
    In order to enhance the precision of network simulations, the paper proposes an approach to adaptively decide the maximum of random variables that create the discrete probabilities to generate nodal traffic on simulated networks. In this paper, a statistical model is first suggested to manifest the bound of statistical errors. Then, according to the minimum probability that generates nodal traffic, a formula is proposed to decide the maximum. In the formula, a precision parameter is used to present the degree of simulative accuracy. Meanwhile, the maximum adaptively varies with the traffic distribution among nodes because the decision depends on the minimum probability generating nodal traffic. In order to verify the effect of the adaptive maximum on simulative precision, an optical network is introduced. After simulating the optical network, the theoretic average waiting time of nodes on the optical network is exploited to validate the exactness of the simulation. The proposed formula deciding the adaptive maximum can be generally exploited in the simulations of various networks. Based on the precision parameter K, a recursive procedure will be developed to automatically produce the adaptive maximum for network simulations in the future

    A near-optimum MAC protocol based on the distributed queueing random access protocol (DQRAP) for a CDMA mobile communication system

    Get PDF
    This paper presents and analyzes a new near-optimum medium access control (MAC) protocol. The proposed access scheme is suitable for a CDMA mobile communication environment, and keeps under control and upper bounded the number of simultaneous transmissions. It has a delay performance approaching that of an ideal optimum M/M/K system, where K is the number of spreading codes being used (maximum number of simultaneous transmissions). The protocol is a free random access protocol when the traffic load is light, and switches smoothly and automatically to a reservation protocol when traffic load becomes heavier. It is based on distributed queues and a collision resolution algorithm. Moreover, a physical receiver structure is proposed and analyzed in order to preserve the robustness of the protocol in a wireless link. The results obtained show that the protocol outperforms other well known medium access protocols in terms of stability and delay, even when taking into account the loss caused by channel propagation conditions.Peer Reviewe
    • …
    corecore