289 research outputs found

    Physical-Layer Cooperation in Coded OFDM Relaying Systems

    Get PDF
    Mobile communication systems nowadays require ever-increasing data rate and coverage of wide areas. One promising approach to achieve this goal is the application of cooperative communications enabled by introducing intermediate nodes known as relays to support the transmission between terminals. By processing and forwarding the receive message at the relays, the path-loss effect between the source and the destination is mitigated. One major limit factor for relay assisted communications is that a relay cannot transmit and receive using the same physical resources. Therefore, a half-duplex constraint is commonly assumed resulting in halved spectral efficiency. To combat this drawback, two-way relaying is introduced, where two sources exchange information with each. On the other hand, due to the physical limitation of the relays, e.g., wireless sensor nodes, it's not possible to implement multiple antennas at one relay, which prohibits the application of multiple-input multiple-output (MIMO) techniques. However, when treating multiple relays as a cluster, a virtual antenna array is formed to perform MIMO techniques in a distributed manner. %This thesis aims at designing efficient one-way and two-way relaying schemes. Specifically, existing schemes from the literature are improved and new schemes are developed with the emphasis on coded orthogonal frequency division multiplexing (OFDM) transmissions. Of special interest is the application of physical-layer network coding (PLNC) for two-phase two-way relaying. In this case, a network coded message is estimated from the superimposed receive signal at the relay using PLNC schemes. The schemes are investigated based on a mutual information analysis and their performance are improved by a newly proposed phase control strategy. Furthermore, performance degradation due to system asynchrony is mitigated depending on different PLNC schemes. When multiple relays are available, novel cooperation schemes allowing information exchange within the relay cluster are proposed that facilitate distributed MIMO reception and transmission. Additionally, smart signaling approaches are presented to enable the cooperation at different levels with the cooperation overhead taken into account adequately in system performance evaluation

    Forwarding strategies and optimal power allocation for coherent and noncoherent relay networks

    Get PDF
    In fading wireless channels, relays are used with the aim of achieving diversity and thus overall performance gain. In cooperative relay networks, various forwarding techniques like amplify and forward (AF) and decode and forward (DF) are used at the relay for better throughput and improved BER performance than traditional multihop systems. In a power constrained environment, the performance can be further improved by using an optimal power allocation strategy. The relative position of the relay with respect to the source and destination also has an immense effect on the efficacy of the relay.;We position the relay at various positions in a planar grid, with the position of source and destination being fixed, and we investigate the effect that the positioning of the relay has on a relaying system. We use our three terminal model to optimize the power allocation under total transmit power constraint, to maximize the instantaneous signal-to-noise ratio (SNR) at destination, and thus achieve improved throughput and BER performance, while using AF and DF protocols. We evaluate the performance of our system for both coherent and noncoherent modulation in a Rayleigh block fading channel. Quadrature phase shift keying (QPSK) is used in the coherent case and 4-Frequency shift keying (4-FSK) is used in the noncoherent case.;Previous works involving power allocation schemes have mainly concentrated on optimizing information theoretic quantities like capacity and outage probability. We derive expressions for instantaneous SNR using our model and optimize the power allocation based on that, with the final aim of achieving improved uncoded BER. Analytical expressions of the instantaneous SNR at the destination are derived for both AF and DF. These expressions are numerically optimized to obtain an optimum power allocation strategy for each position of the relay in both the AF and DF schemes using coherent or noncoherent detection.;We compare the performance of the AF and DF protocols based on their positional BER and throughput at different received SNR and notice that our power optimized schemes outperform existing power control schemes at certain areas. Finally we also identify the shape and area of the regions where relaying would provide performance gains for both the protocols at different received SNRs

    Cooperative diversity for the cellular uplink: Sharing strategies, performance analysis, and receiver design

    Get PDF
    In this thesis, we propose data sharing schemes for the cooperative diversity in a cellular uplink to exploit diversity and enhance throughput performance of the system. Particularly, we consider new two and three-or-more user decode and forward (DF) protocols using space time block codes. We discuss two-user and three-user amplify and forward (AF) protocols and evaluate the performance of the above mentioned data sharing protocols in terms of the bit error rate and the throughput in an asynchronous code division multiple access (CDMA) cellular uplink. We develop a linear receiver for joint space-time decoding and multiuser detection that provides full diversity and near maximum-likelihood performance.;We also focus on a practical situation where inter-user channel is noisy and cooperating users can not successfully estimate other user\u27s data. We further design our system model such that, users decide not to forward anything in case of symbol errors. Channel estimation plays an important role here, since cooperating users make random estimation errors and the base station can not have the knowledge of the errors or the inter-user channels. We consider a training-based approach for channel estimation. We provide an information outage probability analysis for the proposed multi-user sharing schemes. (Abstract shortened by UMI.)
    • …
    corecore