17,895 research outputs found

    Generalization Error Bounds of Gradient Descent for Learning Over-parameterized Deep ReLU Networks

    Full text link
    Empirical studies show that gradient-based methods can learn deep neural networks (DNNs) with very good generalization performance in the over-parameterization regime, where DNNs can easily fit a random labeling of the training data. Very recently, a line of work explains in theory that with over-parameterization and proper random initialization, gradient-based methods can find the global minima of the training loss for DNNs. However, existing generalization error bounds are unable to explain the good generalization performance of over-parameterized DNNs. The major limitation of most existing generalization bounds is that they are based on uniform convergence and are independent of the training algorithm. In this work, we derive an algorithm-dependent generalization error bound for deep ReLU networks, and show that under certain assumptions on the data distribution, gradient descent (GD) with proper random initialization is able to train a sufficiently over-parameterized DNN to achieve arbitrarily small generalization error. Our work sheds light on explaining the good generalization performance of over-parameterized deep neural networks.Comment: 27 pages. This version simplifies the proof and improves the presentation in Version 3. In AAAI 202

    Hybrid Deterministic-Stochastic Methods for Data Fitting

    Full text link
    Many structured data-fitting applications require the solution of an optimization problem involving a sum over a potentially large number of measurements. Incremental gradient algorithms offer inexpensive iterations by sampling a subset of the terms in the sum. These methods can make great progress initially, but often slow as they approach a solution. In contrast, full-gradient methods achieve steady convergence at the expense of evaluating the full objective and gradient on each iteration. We explore hybrid methods that exhibit the benefits of both approaches. Rate-of-convergence analysis shows that by controlling the sample size in an incremental gradient algorithm, it is possible to maintain the steady convergence rates of full-gradient methods. We detail a practical quasi-Newton implementation based on this approach. Numerical experiments illustrate its potential benefits.Comment: 26 pages. Revised proofs of Theorems 2.6 and 3.1, results unchange

    Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization

    Full text link
    Relative to the large literature on upper bounds on complexity of convex optimization, lesser attention has been paid to the fundamental hardness of these problems. Given the extensive use of convex optimization in machine learning and statistics, gaining an understanding of these complexity-theoretic issues is important. In this paper, we study the complexity of stochastic convex optimization in an oracle model of computation. We improve upon known results and obtain tight minimax complexity estimates for various function classes
    • …
    corecore