14 research outputs found

    Short Packets over Block-Memoryless Fading Channels: Pilot-Assisted or Noncoherent Transmission?

    Get PDF
    We present nonasymptotic upper and lower bounds on the maximum coding rate achievable when transmitting short packets over a Rician memoryless block-fading channel for a given requirement on the packet error probability. We focus on the practically relevant scenario in which there is no \emph{a priori} channel state information available at the transmitter and at the receiver. An upper bound built upon the min-max converse is compared to two lower bounds: the first one relies on a noncoherent transmission strategy in which the fading channel is not estimated explicitly at the receiver; the second one employs pilot-assisted transmission (PAT) followed by maximum-likelihood channel estimation and scaled mismatched nearest-neighbor decoding at the receiver. Our bounds are tight enough to unveil the optimum number of diversity branches that a packet should span so that the energy per bit required to achieve a target packet error probability is minimized, for a given constraint on the code rate and the packet size. Furthermore, the bounds reveal that noncoherent transmission is more energy efficient than PAT, even when the number of pilot symbols and their power is optimized. For example, for the case when a coded packet of 168168 symbols is transmitted using a channel code of rate 0.480.48 bits/channel use, over a block-fading channel with block size equal to 88 symbols, PAT requires an additional 1.21.2 dB of energy per information bit to achieve a packet error probability of 10−310^{-3} compared to a suitably designed noncoherent transmission scheme. Finally, we devise a PAT scheme based on punctured tail-biting quasi-cyclic codes and ordered statistics decoding, whose performance are close (11 dB gap at 10−310^{-3} packet error probability) to the ones predicted by our PAT lower bound. This shows that the PAT lower bound provides useful guidelines on the design of actual PAT schemes.Comment: 30 pages, 5 figures, journa

    The Impact of Hard-Decision Detection on the Energy Efficiency of Phase and Frequency Modulation

    Full text link
    The central design challenge in next generation wireless systems is to have these systems operate at high bandwidths and provide high data rates while being cognizant of the energy consumption levels especially in mobile applications. Since communicating at very high data rates prohibits obtaining high bit resolutions from the analog-to-digital (A/D) converters, analysis of the energy efficiency under the assumption of hard-decision detection is called for to accurately predict the performance levels. In this paper, transmission over the additive white Gaussian noise (AWGN) channel, and coherent and noncoherent fading channels is considered, and the impact of hard-decision detection on the energy efficiency of phase and frequency modulations is investigated. Energy efficiency is analyzed by studying the capacity of these modulation schemes and the energy required to send one bit of information reliably in the low signal-to-noise ratio (SNR) regime. The capacity of hard-decision-detected phase and frequency modulations is characterized at low SNR levels through closed-form expressions for the first and second derivatives of the capacity at zero SNR. Subsequently, bit energy requirements in the low-SNR regime are identified. The increases in the bit energy incurred by hard-decision detection and channel fading are quantified. Moreover, practical design guidelines for the selection of the constellation size are drawn from the analysis of the spectral efficiency--bit energy tradeoff.Comment: To appear in the IEEE Transactions on Wireless Communication

    Short Packets over Block-Memoryless Fading Channels: Pilot-Assisted or Noncoherent Transmission?

    Get PDF
    We present nonasymptotic upper and lower bounds on the maximum coding rate achievable when transmitting shortpackets over a Rician memoryless block-fading channel for a given requirement on the packet error probability.We focus on the practically relevant scenario in which there is no a priori channel state information available at the transmitter and at the receiver. An upper bound built upon the min-max converse is compared to two lower bounds: the first one relies on a noncoherent transmission strategy in which the fading channel is not estimated explicitly at the receiver; the second one employs pilot-assisted transmission (PAT) followed by maximum-likelihood channel estimation and scaled mismatched nearest-neighbor decoding at the receiver. Our bounds are tight enough to unveil the optimum number ofdiversity branches that a packet should span so that the energy per bit required to achieve a target packet error probability is minimized, for a given constraint on the code rate and the packet size. Furthermore, the bounds reveal that noncoherent transmission is more energy efficient than PAT, even when the number of pilot symbols and their power is optimized. For example, in Rayleigh fading, for the case when a coded packet of 168 symbols is transmitted using a channel code of rate 0.48 bits/channel use, over a block-fading channel with block size equal to 8 symbols, PAT requires an additional 1.2 dB of energy per information bit to achieve a packet error probability of 10\u1000003 compared to a suitably designed noncoherent transmission scheme. Finally, we devise a PAT scheme based on punctured tail-biting quasi-cyclic codes and ordered statistics decoding, whose performance is close (1 dB gap at 10^-3 packet error probability) to the ones predicted by our PAT lower bound. This shows that the PAT lower bound provides useful guidelines on the design of actual PAT schemes

    Communication for wideband fading channels : on theory and practice

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 163-167).This dissertation investigates some information theoretic aspects of communication over wideband fading channels and their applicability to design of signaling schemes approaching the wideband capacity limit. This work thus leads to enhanced understanding of wideband fading channel communication, and to the proposal of novel efficient signaling schemes, which perform very close to the optimal limit. The potential and limitations of such signaling schemes are studied. First, the structure of the optimal input signals is investigated for two commonly used channel models: the discrete-time memoryless Rician fading channel and the Rayleigh block fading channel. When the input is subject to an average power constraint. it is shown that the capacity-achieving input amplitude distribution for a Rician channel is discrete with a finite number of mass points in the low SNR regime. A similar discrete structure for the optimal amplitude is proven to hold over the entire SNR range for the average power limited Rayleigh block fading channel. Channels with a peak power constraint are also analyzed. When the input is constrained to have limited peak power, we show that if its Kuhn-Tucker condition satisfies a sufficient condition, the optimal input amplitude is discrete with a finite number of values.(cont.) In the low SNR regime, the discrete structure becomes binary. Next, we consider signaling over general fading models. Multi-tone FSK, a signaling scheme which uses low duty cycle frequency-shift keying signals (essentially orthogonal binary signals, is proposed and shown to be capacity achieving in the widceband limit. Transmission of information over wideband fading channels using Multi-tonc FSK is considered by using both theoretic analysis and numerical simulation. With a finite bandwidth and noncoherent detection, the achievable data rate of the Multi-tone FSK scheme is close to the wideband capacity limit. furthermore, a feedback scheme is proposed for Multi-tone FSK to improve the codeword error performance. It is shown that if the receiver can feedback received signal quality to the transimitter. a significant improvement in codeword error probability can be achieved. Experimental results are also obtained to dlenlonstrate features and practicality of Multi-tone FSK.by Cheng Luo.Ph.D

    Bit-Interleaved Coded Modulation

    Get PDF

    An Assessment of Indoor Geolocation Systems

    Get PDF
    Currently there is a need to design, develop, and deploy autonomous and portable indoor geolocation systems to fulfil the needs of military, civilian, governmental and commercial customers where GPS and GLONASS signals are not available due to the limitations of both GPS and GLONASS signal structure designs. The goal of this dissertation is (1) to introduce geolocation systems; (2) to classify the state of the art geolocation systems; (3) to identify the issues with the state of the art indoor geolocation systems; and (4) to propose and assess four WPI indoor geolocation systems. It is assessed that the current GPS and GLONASS signal structures are inadequate to overcome two main design concerns; namely, (1) the near-far effect and (2) the multipath effect. We propose four WPI indoor geolocation systems as an alternative solution to near-far and multipath effects. The WPI indoor geolocation systems are (1) a DSSS/CDMA indoor geolocation system, (2) a DSSS/CDMA/FDMA indoor geolocation system, (3) a DSSS/OFDM/CDMA/FDMA indoor geolocation system, and (4) an OFDM/FDMA indoor geolocation system. Each system is researched, discussed, and analyzed based on its principle of operation, its transmitter, the indoor channel, and its receiver design and issues associated with obtaining an observable to achieve indoor navigation. Our assessment of these systems concludes the following. First, a DSSS/CDMA indoor geolocation system is inadequate to neither overcome the near-far effect not mitigate cross-channel interference due to the multipath. Second, a DSSS/CDMA/FDMA indoor geolocation system is a potential candidate for indoor positioning, with data rate up to 3.2 KBPS, pseudorange error, less than to 2 m and phase error less than 5 mm. Third, a DSSS/OFDM/CDMA/FDMA indoor geolocation system is a potential candidate to achieve similar or better navigation accuracy than a DSSS/CDMA indoor geolocation system and data rate up to 5 MBPS. Fourth, an OFDM/FDMA indoor geolocation system is another potential candidate with a totally different signal structure than the pervious three WPI indoor geolocation systems, but with similar pseudorange error performance

    Bit-interleaved coded modulation

    Full text link
    corecore