23 research outputs found

    Goal-Oriented Adaptive Mesh Refinement for the Quasicontinuum Approximation of a Frenkel-Kontorova Model

    Full text link
    The quasicontinuum approximation is a method to reduce the atomistic degrees of freedom of a crystalline solid by piecewise linear interpolation from representative atoms that are nodes for a finite element triangulation. In regions of the crystal with a highly nonuniform deformation such as around defects, every atom must be a representative atom to obtain sufficient accuracy, but the mesh can be coarsened away from such regions to remove atomistic degrees of freedom while retaining sufficient accuracy. We present an error estimator and a related adaptive mesh refinement algorithm for the quasicontinuum approximation of a generalized Frenkel-Kontorova model that enables a quantity of interest to be efficiently computed to a predetermined accuracy.Comment: 15 pages, 6 figures, 3 table

    An Analysis of the Effect of Ghost Force Oscillation on Quasicontinuum Error

    Get PDF
    The atomistic to continuum interface for quasicontinuum energies exhibits nonzero forces under uniform strain that have been called ghost forces. In this paper, we prove for a linearization of a one-dimensional quasicontinuum energy around a uniform strain that the effect of the ghost forces on the displacement nearly cancels and has a small effect on the error away from the interface. We give optimal order error estimates that show that the quasicontinuum displacement converges to the atomistic displacement at the optimal rate O(hh) in the discrete \ell^\infty norm and O(h1/ph^{1/p}) in the w1,pw^{1,p} norm for 1p<.1 \leq p < \infty. where hh is the interatomic spacing. We also give a proof that the error in the displacement gradient decays away from the interface to O(hh) at distance O(hloghh|\log h|) in the atomistic region and distance O(hh) in the continuum region. E, Ming, and Yang previously gave a counterexample to convergence in the w1,w^{1,\infty} norm for a harmonic interatomic potential. Our work gives an explicit and simplified form for the decay of the effect of the atomistic to continuum coupling error in terms of a general underlying interatomic potential and gives the estimates described above in the discrete \ell^\infty and w1,pw^{1,p} norms.Comment: 14 pages, 1 figur

    A Dynamic Atomistic-Continuum Method for the Simulation of Crystalline Materials

    Full text link
    We present a coupled atomistic-continuum method for the modeling of defects and interface dynamics of crystalline materials. The method uses atomistic models such as molecular dynamics near defects and interfaces, and continuum models away from defects and interfaces. We propose a new class of matching conditions between the atomistic and continuum regions. These conditions ensure the accurate passage of large scale information between the atomistic and continuum regions and at the same time minimize the reflection of phonons at the atomistic-continuum interface. They can be made adaptive if we choose appropriate weight functions. We present applications to dislocation dynamics, friction between two-dimensional crystal surfaces and fracture dynamics. We compare results of the coupled method and the detailed atomistic model.Comment: 48 pages, 20 figure

    Efficient a Posteriori Error Control of a Consistent Atomistic/Continuum Coupling Method for Two Dimensional Crystalline Defects

    Full text link
    Adaptive atomistic/continuum (a/c) coupling method is an important method for the simulation of material and atomistic systems with defects to achieve the balance of accuracy and efficiency. Residual based a posteriori error estimator is often employed in the adaptive algorithm to provide an estimate of the error of the strain committed by applying the continuum approximation for the atomistic system and the finite element discretization in the continuum region. In this work, we propose a theory based approximation for the residual based a posteriori error estimator which greatly improves the efficiency of the adaptivity. In particular, the numerically expensive modeling residual is only computed exactly in a small region around the coupling interface but replaced by a theoretically justified approximation by the coarsening residual outside that region. We present a range of adaptive computations based on our modified a posteriori error estimator and its variants for different types of crystalline defects some of which are not considered in previous related literature of the adaptive a/c methods. The numerical results show that, compared with the original residual based error estimator, the adaptive algorithm using the modified error estimator with properly chosen parameters leads to the same optimal convergence rate of the error but reduces the computational cost by one order with respect to the number of degrees of freedom

    A Posteriori Error Estimates for Energy-Based Quasicontinuum Approximations of a Periodic Chain

    Full text link
    We present a posteriori error estimates for a recently developed atomistic/continuum coupling method, the Consistent Energy-Based QC Coupling method. The error estimate of the deformation gradient combines a residual estimate and an a posteriori stability analysis. The residual is decomposed into the residual due to the approximation of the stored energy and that due to the approximation of the external force, and are bounded in negative Sobolev norms. In addition, the error estimate of the total energy using the error estimate of the deformation gradient is also presented. Finally, numerical experiments are provided to illustrate our analysis
    corecore