12,750 research outputs found

    Systematic redundant residue number system codes: analytical upper bound and iterative decoding performance over AWGN and Rayleigh channels

    No full text
    The novel family of redundant residue number system (RRNS) codes is studied. RRNS codes constitute maximum–minimum distance block codes, exhibiting identical distance properties to Reed–Solomon codes. Binary to RRNS symbol-mapping methods are proposed, in order to implement both systematic and nonsystematic RRNS codes. Furthermore, the upper-bound performance of systematic RRNS codes is investigated, when maximum-likelihood (ML) soft decoding is invoked. The classic Chase algorithm achieving near-ML soft decoding is introduced for the first time for RRNS codes, in order to decrease the complexity of the ML soft decoding. Furthermore, the modified Chase algorithm is employed to accept soft inputs, as well as to provide soft outputs, assisting in the turbo decoding of RRNS codes by using the soft-input/soft-output Chase algorithm. Index Terms—Redundant residue number system (RRNS), residue number system (RNS), turbo detection

    Fuse: A technique to anticipate failures due to degradation in ALUs

    Get PDF
    This paper proposes the fuse, a technique to anticipate failures due to degradation in any ALU (arithmetic logic unit), and particularly in an adder. The fuse consists of a replica of the weakest transistor in the adder and the circuitry required to measure its degradation. By mimicking the behavior of the replicated transistor the fuse anticipates the failure short before the first failure in the adder appears, and hence, data corruption and program crashes can be avoided. Our results show that the fuse anticipates the failure in more than 99.9% of the cases after 96.6% of the lifetime, even for pessimistic random within-die variations.Peer ReviewedPostprint (published version

    Self-testing and repairing computer Patent

    Get PDF
    Self testing and repairing computer comprising control and diagnostic unit and rollback points for error correctio
    • 

    corecore