7,086 research outputs found

    Mass-Market Receiver for Static Positioning: Tests and Statistical Analyses

    Get PDF
    Nowadays, there are several low cost GPS receivers able to provide both pseudorange and carrier phase measurements in the L1band, that allow to have good realtime performances in outdoor condition. The present paper describes a set of dedicated tests in order to evaluate the positioning accuracy in static conditions. The quality of the pseudorange and the carrier phase measurements let hope for interesting results. The use of such kind of receiver could be extended to a large number of professional applications, like engineering fields: survey, georeferencing, monitoring, cadastral mapping and cadastral road. In this work, the receivers performance is verified considering a single frequency solution trying to fix the phase ambiguity, when possible. Different solutions are defined: code, float and fix solutions. In order to solve the phase ambiguities different methods are considered. Each test performed is statistically analyzed, highlighting the effects of different factors on precision and accurac

    Position control of an industrial robot using an optical measurement system for machining purposes

    Get PDF
    A series of mechanical properties and disturbances limit the accuracy achievable in robotic applications. External control of the end effector position is commonly known as being an appropriate mean to increase accuracy. This paper presents an approach for position control of industrial robots using the pass-through between an industrial CNC and servomotors. A CNC-controlled robot is used together with an external optical measurement system to close the feedback loop of robot end effector and robot controller in order to improve robot accuracy. For short cycle times and implementation reasons a PLC is used for signal processing and control implementation. The relevance of the approach is outlined in experiments. The robot behaviour in free space motion and in machining application is analysed with the optical measurement system and a CMM

    Enhanced indoor location tracking through body shadowing compensation

    Get PDF
    This paper presents a radio frequency (RF)-based location tracking system that improves its performance by eliminating the shadowing caused by the human body of the user being tracked. The presence of such a user will influence the RF signal paths between a body-worn node and the receiving nodes. This influence will vary with the user's location and orientation and, as a result, will deteriorate the performance regarding location tracking. By using multiple mobile nodes, placed on different parts of a human body, we exploit the fact that the combination of multiple measured signal strengths will show less variation caused by the user's body. Another method is to compensate explicitly for the influence of the body by using the user's orientation toward the fixed infrastructure nodes. Both approaches can be independently combined and reduce the influence caused by body shadowing, hereby improving the tracking accuracy. The overall system performance is extensively verified on a building-wide testbed for sensor experiments. The results show a significant improvement in tracking accuracy. The total improvement in mean accuracy is 38.1% when using three mobile nodes instead of one and simultaneously compensating for the user's orientation

    Tightly Coupled 3D Lidar Inertial Odometry and Mapping

    Full text link
    Ego-motion estimation is a fundamental requirement for most mobile robotic applications. By sensor fusion, we can compensate the deficiencies of stand-alone sensors and provide more reliable estimations. We introduce a tightly coupled lidar-IMU fusion method in this paper. By jointly minimizing the cost derived from lidar and IMU measurements, the lidar-IMU odometry (LIO) can perform well with acceptable drift after long-term experiment, even in challenging cases where the lidar measurements can be degraded. Besides, to obtain more reliable estimations of the lidar poses, a rotation-constrained refinement algorithm (LIO-mapping) is proposed to further align the lidar poses with the global map. The experiment results demonstrate that the proposed method can estimate the poses of the sensor pair at the IMU update rate with high precision, even under fast motion conditions or with insufficient features.Comment: Accepted by ICRA 201

    Indoor positioning based on global positioning system signals

    Get PDF
    The Global Positioning System (GPS) is highly reliable and accurate when used outdoors.However, in indoor environments, due to the additional signal loss incurred by the walls of the buildings, the detection and decoding of GPS signals becomes a difficult task. As a solution to the indoor area coverage problem, an indoor positioning system based on GPS repeaters and a modified positioning algorithm is proposed, designed, and tested. A prototype indoor positioning system for 1D/2D positioning is built using directional GPS antennas and low-noise amplifiers (LNA). The modified positioning algorithm is used for the real time processing of captured live GPS data. All the system components are integrated and positioning is obtained for the evaluation of the system performance. Results of the experiments show that the proposed system can be used for indoor positioning in locations where there is no GPS signal reception. The proposed system facilitates the continuation of GPS services indoors with hardware additions to the buildings and only a software update to a standard GPS receiver
    • …
    corecore