1,851 research outputs found

    Quadratic Zonotopes:An extension of Zonotopes to Quadratic Arithmetics

    Full text link
    Affine forms are a common way to represent convex sets of R\mathbb{R} using a base of error terms ϵ[1,1]m\epsilon \in [-1, 1]^m. Quadratic forms are an extension of affine forms enabling the use of quadratic error terms ϵiϵj\epsilon_i \epsilon_j. In static analysis, the zonotope domain, a relational abstract domain based on affine forms has been used in a wide set of settings, e.g. set-based simulation for hybrid systems, or floating point analysis, providing relational abstraction of functions with a cost linear in the number of errors terms. In this paper, we propose a quadratic version of zonotopes. We also present a new algorithm based on semi-definite programming to project a quadratic zonotope, and therefore quadratic forms, to intervals. All presented material has been implemented and applied on representative examples.Comment: 17 pages, 5 figures, 1 tabl

    Correctly Rounded Newton-Cotes Quadrature

    Get PDF
    Numerical integration is an important operation for scientific computations. Although the different quadrature methods have been well studied from a mathematical point of view, the analysis of the actual error when performing the quadrature on a computer is often neglected. This step is however required for certified arithmetics. We study the Newton-Cotes quadrature scheme and give enough details on the algorithms and the error bounds to enable software developers to write a correctly-rounded Newton-Cotes quadrature

    Rigorous numerics for PDEs with indefinite tail: existence of a periodic solution of the Boussinesq equation with time-dependent forcing

    Get PDF
    We consider the Boussinesq PDE perturbed by a time-dependent forcing. Even though there is no smoothing effect for arbitrary smooth initial data, we are able to apply the method of self-consistent bounds to deduce the existence of smooth classical periodic solutions in the vicinity of 0. The proof is non-perturbative and relies on construction of periodic isolating segments in the Galerkin projections

    A Verified Certificate Checker for Finite-Precision Error Bounds in Coq and HOL4

    Full text link
    Being able to soundly estimate roundoff errors of finite-precision computations is important for many applications in embedded systems and scientific computing. Due to the discrepancy between continuous reals and discrete finite-precision values, automated static analysis tools are highly valuable to estimate roundoff errors. The results, however, are only as correct as the implementations of the static analysis tools. This paper presents a formally verified and modular tool which fully automatically checks the correctness of finite-precision roundoff error bounds encoded in a certificate. We present implementations of certificate generation and checking for both Coq and HOL4 and evaluate it on a number of examples from the literature. The experiments use both in-logic evaluation of Coq and HOL4, and execution of extracted code outside of the logics: we benchmark Coq extracted unverified OCaml code and a CakeML-generated verified binary

    Period Doubling Renormalization for Area-Preserving Maps and Mild Computer Assistance in Contraction Mapping Principle

    Full text link
    It has been observed that the famous Feigenbaum-Coullet-Tresser period doubling universality has a counterpart for area-preserving maps of {\fR}^2. A renormalization approach has been used in a "hard" computer-assisted proof of existence of an area-preserving map with orbits of all binary periods in Eckmann et al (1984). As it is the case with all non-trivial universality problems in non-dissipative systems in dimensions more than one, no analytic proof of this period doubling universality exists to date. In this paper we attempt to reduce computer assistance in the argument, and present a mild computer aided proof of the analyticity and compactness of the renormalization operator in a neighborhood of a renormalization fixed point: that is a proof that does not use generalizations of interval arithmetics to functional spaces - but rather relies on interval arithmetics on real numbers only to estimate otherwise explicit expressions. The proof relies on several instance of the Contraction Mapping Principle, which is, again, verified via mild computer assistance

    An elementary way to rigorously estimate convergence to equilibrium and escape rates

    Full text link
    We show an elementary method to have (finite time and asymptotic) computer assisted explicit upper bounds on convergence to equilibrium (decay of correlations) and escape rate for systems satisfying a Lasota Yorke inequality. The bounds are deduced by the ones of suitable approximations of the system's transfer operator. We also present some rigorous experiment showing the approach and some concrete result.Comment: 14 pages, 6 figure
    corecore