57,549 research outputs found

    Bayesian Bounds on Parameter Estimation Accuracy for Compact Coalescing Binary Gravitational Wave Signals

    Get PDF
    A global network of laser interferometric gravitational wave detectors is projected to be in operation by around the turn of the century. Here, the noisy output of a single instrument is examined. A gravitational wave is assumed to have been detected in the data and we deal with the subsequent problem of parameter estimation. Specifically, we investigate theoretical lower bounds on the minimum mean-square errors associated with measuring the parameters of the inspiral waveform generated by an orbiting system of neutron stars/black holes. Three theoretical lower bounds on parameter estimation accuracy are considered: the Cramer-Rao bound (CRB); the Weiss-Weinstein bound (WWB); and the Ziv-Zakai bound (ZZB). We obtain the WWB and ZZB for the Newtonian-form of the coalescing binary waveform, and compare them with published CRB and numerical Monte-Carlo results. At large SNR, we find that the theoretical bounds are all identical and are attained by the Monte-Carlo results. As SNR gradually drops below 10, the WWB and ZZB are both found to provide increasingly tighter lower bounds than the CRB. However, at these levels of moderate SNR, there is a significant departure between all the bounds and the numerical Monte-Carlo results.Comment: 17 pages (LaTeX), 4 figures. Submitted to Physical Review

    Choice of Measurement Sets in Qubit Tomography

    Full text link
    Optimal generalized measurements for state estimation are well understood. However, practical quantum state tomography is typically performed using a fixed set of projective measurements and the question of how to choose these measurements has been largely unexplored in the literature. In this work we develop theoretical asymptotic bounds for the average fidelity of pure qubit tomography using measurement sets whose axes correspond to vertices of Platonic solids. We also present complete simulations of maximum likelihood tomography for mixed qubit states using the Platonic solid measurements. We show that overcomplete measurement sets can be used to improve the accuracy of tomographic reconstructions.Comment: 13 Pages, 6 figure

    Statistics of the MLE and Approximate Upper and Lower Bounds - Part 1: Application to TOA Estimation

    Get PDF
    In nonlinear deterministic parameter estimation, the maximum likelihood estimator (MLE) is unable to attain the Cramer-Rao lower bound at low and medium signal-to-noise ratios (SNR) due the threshold and ambiguity phenomena. In order to evaluate the achieved mean-squared-error (MSE) at those SNR levels, we propose new MSE approximations (MSEA) and an approximate upper bound by using the method of interval estimation (MIE). The mean and the distribution of the MLE are approximated as well. The MIE consists in splitting the a priori domain of the unknown parameter into intervals and computing the statistics of the estimator in each interval. Also, we derive an approximate lower bound (ALB) based on the Taylor series expansion of noise and an ALB family by employing the binary detection principle. The accurateness of the proposed MSEAs and the tightness of the derived approximate bounds are validated by considering the example of time-of-arrival estimation
    corecore