1,222 research outputs found

    Pointwise-in-time error estimates for an optimal control problem with subdiffusion constraint

    Full text link
    In this work, we present numerical analysis for a distributed optimal control problem, with box constraint on the control, governed by a subdiffusion equation which involves a fractional derivative of order α(0,1)\alpha\in(0,1) in time. The fully discrete scheme is obtained by applying the conforming linear Galerkin finite element method in space, L1 scheme/backward Euler convolution quadrature in time, and the control variable by a variational type discretization. With a space mesh size hh and time stepsize τ\tau, we establish the following order of convergence for the numerical solutions of the optimal control problem: O(τmin(1/2+αϵ,1)+h2)O(\tau^{\min({1}/{2}+\alpha-\epsilon,1)}+h^2) in the discrete L2(0,T;L2(Ω))L^2(0,T;L^2(\Omega)) norm and O(ταϵ+h2h2)O(\tau^{\alpha-\epsilon}+\ell_h^2h^2) in the discrete L(0,T;L2(Ω))L^\infty(0,T;L^2(\Omega)) norm, with any small ϵ>0\epsilon>0 and h=ln(2+1/h)\ell_h=\ln(2+1/h). The analysis relies essentially on the maximal LpL^p-regularity and its discrete analogue for the subdiffusion problem. Numerical experiments are provided to support the theoretical results.Comment: 20 pages, 6 figure

    Analytic Regularity and GPC Approximation for Control Problems Constrained by Linear Parametric Elliptic and Parabolic PDEs

    Get PDF
    This paper deals with linear-quadratic optimal control problems constrained by a parametric or stochastic elliptic or parabolic PDE. We address the (difficult) case that the state equation depends on a countable number of parameters i.e., on σj\sigma_j with jNj\in\N, and that the PDE operator may depend non-affinely on the parameters. We consider tracking-type functionals and distributed as well as boundary controls. Building on recent results in [CDS1, CDS2], we show that the state and the control are analytic as functions depending on these parameters σj\sigma_j. We establish sparsity of generalized polynomial chaos (gpc) expansions of both, state and control, in terms of the stochastic coordinate sequence σ=(σj)j1\sigma = (\sigma_j)_{j\ge 1} of the random inputs, and prove convergence rates of best NN-term truncations of these expansions. Such truncations are the key for subsequent computations since they do {\em not} assume that the stochastic input data has a finite expansion. In the follow-up paper [KS2], we explain two methods how such best NN-term truncations can practically be computed, by greedy-type algorithms as in [SG, Gi1], or by multilevel Monte-Carlo methods as in [KSS]. The sparsity result allows in conjunction with adaptive wavelet Galerkin schemes for sparse, adaptive tensor discretizations of control problems constrained by linear elliptic and parabolic PDEs developed in [DK, GK, K], see [KS2]

    Mini-Workshop: Numerical Analysis for Non-Smooth PDE-Constrained Optimal Control Problems

    Get PDF
    This mini-workshop brought together leading experts working on various aspects of numerical analysis for optimal control problems with nonsmoothness. Fifteen extended abstracts summarize the presentations at this mini-workshop
    corecore