4,161 research outputs found

    CayleyNets: Graph Convolutional Neural Networks with Complex Rational Spectral Filters

    Full text link
    The rise of graph-structured data such as social networks, regulatory networks, citation graphs, and functional brain networks, in combination with resounding success of deep learning in various applications, has brought the interest in generalizing deep learning models to non-Euclidean domains. In this paper, we introduce a new spectral domain convolutional architecture for deep learning on graphs. The core ingredient of our model is a new class of parametric rational complex functions (Cayley polynomials) allowing to efficiently compute spectral filters on graphs that specialize on frequency bands of interest. Our model generates rich spectral filters that are localized in space, scales linearly with the size of the input data for sparsely-connected graphs, and can handle different constructions of Laplacian operators. Extensive experimental results show the superior performance of our approach, in comparison to other spectral domain convolutional architectures, on spectral image classification, community detection, vertex classification and matrix completion tasks

    Conformal Maps to Multiply-Slit Domains and Applications

    Get PDF
    By exploiting conformal maps to vertically slit regions in the complex plane, a recently developed rational spectral method [Tee and Trefethen, 2006] is able to solve PDEs with interior layer-like behaviour using significantly fewer collocation points than traditional spectral methods. The conformal maps are chosen to 'enlarge the region of analyticity' in the solution: an idea which can be extended to other numerical methods based upon global polynomial interpolation. Here we show how such maps can be rapidly computed in both periodic and nonperiodic geometries, and apply them to some challenging differential equations

    Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains

    Full text link
    Many PDEs involving fractional Laplacian are naturally set in unbounded domains with underlying solutions decay very slowly, subject to certain power laws. Their numerical solutions are under-explored. This paper aims at developing accurate spectral methods using rational basis (or modified mapped Gegenbauer functions) for such models in unbounded domains. The main building block of the spectral algorithms is the explicit representations for the Fourier transform and fractional Laplacian of the rational basis, derived from some useful integral identites related to modified Bessel functions. With these at our disposal, we can construct rational spectral-Galerkin and direct collocation schemes by pre-computing the associated fractional differentiation matrices. We obtain optimal error estimates of rational spectral approximation in the fractional Sobolev spaces, and analyze the optimal convergence of the proposed Galerkin scheme. We also provide ample numerical results to show that the rational method outperforms the Hermite function approach

    A new level-dependent coarsegrid correction scheme for indefinite Helmholtz problems

    Full text link
    In this paper we construct and analyse a level-dependent coarsegrid correction scheme for indefinite Helmholtz problems. This adapted multigrid method is capable of solving the Helmholtz equation on the finest grid using a series of multigrid cycles with a grid-dependent complex shift, leading to a stable correction scheme on all levels. It is rigourously shown that the adaptation of the complex shift throughout the multigrid cycle maintains the functionality of the two-grid correction scheme, as no smooth modes are amplified in or added to the error. In addition, a sufficiently smoothing relaxation scheme should be applied to ensure damping of the oscillatory error components. Numerical experiments on various benchmark problems show the method to be competitive with or even outperform the current state-of-the-art multigrid-preconditioned Krylov methods, like e.g. CSL-preconditioned GMRES or BiCGStab.Comment: 21 page

    GPU-accelerated discontinuous Galerkin methods on hybrid meshes

    Full text link
    We present a time-explicit discontinuous Galerkin (DG) solver for the time-domain acoustic wave equation on hybrid meshes containing vertex-mapped hexahedral, wedge, pyramidal and tetrahedral elements. Discretely energy-stable formulations are presented for both Gauss-Legendre and Gauss-Legendre-Lobatto (Spectral Element) nodal bases for the hexahedron. Stable timestep restrictions for hybrid meshes are derived by bounding the spectral radius of the DG operator using order-dependent constants in trace and Markov inequalities. Computational efficiency is achieved under a combination of element-specific kernels (including new quadrature-free operators for the pyramid), multi-rate timestepping, and acceleration using Graphics Processing Units.Comment: Submitted to CMAM
    corecore