406 research outputs found

    Teletraffic Modeling of Cdma Systems

    Get PDF
    This paper presents teletraffic modeling of Code Division Multiple Access (CDMA) systems that enabled the analysis of such systems capacity. Analytical tools aided by software model that assisted in analysis of the system performance, capacity estimation, dimensioning and design of CDMA networks were achieved. This work, therefore, focused on modeling telephone traffic for analysis of CDMA cellular network capacity. We developed an analytical expression for blocking probability and consequently that for the determination and analysis of the capacity of CDMA networks. The analyses of obtained results showed how interference determined the capacity of CDMA networks and therefore proved that the capacity was not hard limited, but depended on predetermined quality of service for the network. Also, the result showed how the capacity of the network, in terms of number of subscribers, can be estimated for CDMA networks. Graphical results generated from the blocking model showed the effect of variations in interference parameters on CDMA capacity. The Erlang capacity from the model was adapted into Erlang B formula to estimate capacity in terms of channels, and the number of subscribers a typical CDMA sector could accommodate

    Genetically Enhanced Performance of a UTRA-like Time-Division Duplex CDMA Network

    No full text
    In this contribution a Dynamic Channel Allocation (DCA) algorithm is developed, which minimizes the amount of Multi-User Interference (MUI) experienced at the Base Stations (BSs) by employing Genetic Algorithms (GAs). A GA is utilized for finding a suboptimum, but highly beneficial Uplink (UL) or Downlink (DL) Timeslot (TS) allocation for improving the achievable performance of the third generation UTRA system’s Time Division Duplex (TDD) mode. It is demonstrated that a GA-assisted UL/DL timeslot scheduling scheme may avoid the severe BS to BS inter-cell interference potentially inflicted by the UTRA TDD CDMA air interface owing to allowing all TSs to be used both in the UL and D

    Characterizing CDMA downlink feasibility via effective interference

    Get PDF
    This paper models and analyses downlink power assignment feasibility in Code Division Multiple Access (CDMA) mobile networks. By discretizing the area into small segments, the power requirements are characterized via a matrix representation that separates user and system characteristics. We obtain a closed-form analytical expression of the so-called Perron-Frobenius eigenvalue of that matrix, which provides a quick assessment of the feasibility of the power assignment for each distribution of calls over the segments. Although the obtained relation is non-linear, it basically provides an effective interference characterisation of downlink feasibility. Our results allow for a fast evaluation of outage and blocking probabilities, and enable a quick evaluation of feasibility that may be used for Call Acceptance Control. \u

    Erlang capacity of ATM-based CDMA satellite system

    Full text link

    Wireless digital point to multipoint link utilizing wideband CDMA

    Get PDF
    One of the proposed techniques for multiple access communications for the third generation is code division multiple access (CDMA). This has been shown to be a viable alternative to both TDMA and FDMA. While there does not appear to be a single multiple accessing technique that is superior to others in all situations, there are characteristics of CDMA that give it a distinct advantage over the other multiple access techniques. In CDMA each user is provided with an unique, orthogonal code. If these K codes are orthogonal and uncorrelated with each other, than K independent users can transmit at the same time and in the same radio bandwidth. The receivers decorrelate the information and regenerate the original transmitted signal. It must be noted that the term "Wideband CDMA" is used comparatively to the only existing commercial CDMA system, IS-95 which uses a spectral bandwidth of only 1.2288 MHz. This thesis examines and evaluates a good set of orthonormal codes (orthogonal and normalized to have equal power) and their application to providing accessing for a point to multipoint (PMP) stationary system. The correlation properties, design and constellation properties of these codes are investigated. The system model is then simulated using Systemview and then evaluated in terms of it's bit error rate, user capacity and Erlang with addition of users to the system

    Congestion probabilities in CDMA-based networks supporting batched Poisson traffic

    Get PDF
    We propose a new multirate teletraffic loss model for the calculation of time and call congestion probabilities in CDMA-based networks that accommodate calls of different serviceclasses whose arrival follows a batched Poisson process. The latter is more "peaked" and "bursty" than the ordinary Poisson process. The acceptance of calls in the system is based on the partial batch blocking discipline. This policy accepts a part of the batch (one or more calls) and discards the rest if the available resources are not enough to accept the whole batch. The proposed model takes into account the multiple access interference, the notion of local (soft) blocking, user’s activity and the interference cancellation. Although the analysis of the model does not lead to a product form solution of the steady state probabilities, we show that the calculation of the call-level performance metrics, time and call congestion probabilities, can be based on approximate but recursive formulas. The accuracy of the proposed formulas are verified through simulation and found to be quite satisfactory

    Performance improvements in wireless CDMA communications utilizing adaptive antenna arrays

    Get PDF
    This dissertation studies applications of adaptive antenna arrays and space-time adaptive processing (STAP) in wireless code-division multiple-access (CDMA) communications. The work addresses three aspects of the CDMA communications problems: (I) near-far resistance, (2) reverse link, (3) forward link. In each case, adaptive arrays are applied and their performance is investigated. The near-far effect is a well known problem which affects the reverse link of CDMA communication systems. The near-far resistance of STAP is analyzed for two processing methods: maximal ratio combining and optimum combining. It. is shown that while maximal ratio combining is not near-far resistant, optimum combining is near-far resistant when the number of cochannel interferences is less than the system dimensionality. The near-far effect can be mitigated by accurate power control at the mobile station. With practical limitations, the received signal power at a base station from a power-controlled user is a random variable clue to power control error. The statistical model of signal-to-interference ratio at the antenna array output of a base station is presented, and the outage probability of the CDMA reverse link is analyzed while considering Rayleigh fading, voice activity and power control error. New analytical expressions are obtained and demonstrated by computer simulations. For the application of an adaptive antenna. array at the forward link, a receiver architecture is suggested for the mobile station that utilizes a small two-antenna array For interference suppression. Such a receiver works well only when the channel vector of the desired signal is known. The identifying spreading codes (as in IS-95A for example) are used to provide an adaptive channel vector estimate, and control the beam steering weight, hence improve the receiver performance. Numerical results are presented to illustrate the operation of the proposed receiver model and the improvement in performance and capacity

    Loosely synchronized spreading code aided network performance of quasi-synchronous UTRA-like TDD/CDMA systems

    No full text
    In this paper we investigate the achievable capacity of a UTRA-like Time Division Duplex (TDD) Code Division Multiple Access (CDMA) system employing Loosely Synchronized (LS) spreading codes. The family of operational CDMA systems is interference limited, suffering from Inter-Symbol-Interference (ISI), since the orthogonality of the spreading sequences is destroyed by the frequency selective channel. They also suffer from Multiple-Access-Interference (MAI) owing to the non-zero cross-correlations of the spreading codes. By contrast, the family of LS codes exhibits a so-called Interference Free Window (IFW), where both the auto-correlation and cross-correlation of the codes become zero. Therefore LS codes have the promise of mitigating the effects of both ISI and MAI in time dispersive channels. Hence, LS codes have the potential of increasing the capacity of CDMA networks. This contribution studies the achievable network performance in comparison to that of a UTRA-like TDD/CDMA system using Orthogonal Vari- MSO able Rate Spreading Factor (OVSF) codes
    • 

    corecore