337 research outputs found

    The cockpit for the 21st century

    Get PDF
    Interactive surfaces are a growing trend in many domains. As one possible manifestation of Mark Weiser’s vision of ubiquitous and disappearing computers in everywhere objects, we see touchsensitive screens in many kinds of devices, such as smartphones, tablet computers and interactive tabletops. More advanced concepts of these have been an active research topic for many years. This has also influenced automotive cockpit development: concept cars and recent market releases show integrated touchscreens, growing in size. To meet the increasing information and interaction needs, interactive surfaces offer context-dependent functionality in combination with a direct input paradigm. However, interfaces in the car need to be operable while driving. Distraction, especially visual distraction from the driving task, can lead to critical situations if the sum of attentional demand emerging from both primary and secondary task overextends the available resources. So far, a touchscreen requires a lot of visual attention since its flat surface does not provide any haptic feedback. There have been approaches to make direct touch interaction accessible while driving for simple tasks. Outside the automotive domain, for example in office environments, concepts for sophisticated handling of large displays have already been introduced. Moreover, technological advances lead to new characteristics for interactive surfaces by enabling arbitrary surface shapes. In cars, two main characteristics for upcoming interactive surfaces are largeness and shape. On the one hand, spatial extension is not only increasing through larger displays, but also by taking objects in the surrounding into account for interaction. On the other hand, the flatness inherent in current screens can be overcome by upcoming technologies, and interactive surfaces can therefore provide haptically distinguishable surfaces. This thesis describes the systematic exploration of large and shaped interactive surfaces and analyzes their potential for interaction while driving. Therefore, different prototypes for each characteristic have been developed and evaluated in test settings suitable for their maturity level. Those prototypes were used to obtain subjective user feedback and objective data, to investigate effects on driving and glance behavior as well as usability and user experience. As a contribution, this thesis provides an analysis of the development of interactive surfaces in the car. Two characteristics, largeness and shape, are identified that can improve the interaction compared to conventional touchscreens. The presented studies show that large interactive surfaces can provide new and improved ways of interaction both in driver-only and driver-passenger situations. Furthermore, studies indicate a positive effect on visual distraction when additional static haptic feedback is provided by shaped interactive surfaces. Overall, various, non-exclusively applicable, interaction concepts prove the potential of interactive surfaces for the use in automotive cockpits, which is expected to be beneficial also in further environments where visual attention needs to be focused on additional tasks.Der Einsatz von interaktiven Oberflächen weitet sich mehr und mehr auf die unterschiedlichsten Lebensbereiche aus. Damit sind sie eine mögliche Ausprägung von Mark Weisers Vision der allgegenwärtigen Computer, die aus unserer direkten Wahrnehmung verschwinden. Bei einer Vielzahl von technischen Geräten des täglichen Lebens, wie Smartphones, Tablets oder interaktiven Tischen, sind berührungsempfindliche Oberflächen bereits heute in Benutzung. Schon seit vielen Jahren arbeiten Forscher an einer Weiterentwicklung der Technik, um ihre Vorteile auch in anderen Bereichen, wie beispielsweise der Interaktion zwischen Mensch und Automobil, nutzbar zu machen. Und das mit Erfolg: Interaktive Benutzeroberflächen werden mittlerweile serienmäßig in vielen Fahrzeugen eingesetzt. Der Einbau von immer größeren, in das Cockpit integrierten Touchscreens in Konzeptfahrzeuge zeigt, dass sich diese Entwicklung weiter in vollem Gange befindet. Interaktive Oberflächen ermöglichen das flexible Anzeigen von kontextsensitiven Inhalten und machen eine direkte Interaktion mit den Bildschirminhalten möglich. Auf diese Weise erfüllen sie die sich wandelnden Informations- und Interaktionsbedürfnisse in besonderem Maße. Beim Einsatz von Bedienschnittstellen im Fahrzeug ist die gefahrlose Benutzbarkeit während der Fahrt von besonderer Bedeutung. Insbesondere visuelle Ablenkung von der Fahraufgabe kann zu kritischen Situationen führen, wenn Primär- und Sekundäraufgaben mehr als die insgesamt verfügbare Aufmerksamkeit des Fahrers beanspruchen. Herkömmliche Touchscreens stellen dem Fahrer bisher lediglich eine flache Oberfläche bereit, die keinerlei haptische Rückmeldung bietet, weshalb deren Bedienung besonders viel visuelle Aufmerksamkeit erfordert. Verschiedene Ansätze ermöglichen dem Fahrer, direkte Touchinteraktion für einfache Aufgaben während der Fahrt zu nutzen. Außerhalb der Automobilindustrie, zum Beispiel für Büroarbeitsplätze, wurden bereits verschiedene Konzepte für eine komplexere Bedienung großer Bildschirme vorgestellt. Darüber hinaus führt der technologische Fortschritt zu neuen möglichen Ausprägungen interaktiver Oberflächen und erlaubt, diese beliebig zu formen. Für die nächste Generation von interaktiven Oberflächen im Fahrzeug wird vor allem an der Modifikation der Kategorien Größe und Form gearbeitet. Die Bedienschnittstelle wird nicht nur durch größere Bildschirme erweitert, sondern auch dadurch, dass Objekte wie Dekorleisten in die Interaktion einbezogen werden können. Andererseits heben aktuelle Technologieentwicklungen die Restriktion auf flache Oberflächen auf, so dass Touchscreens künftig ertastbare Strukturen aufweisen können. Diese Dissertation beschreibt die systematische Untersuchung großer und nicht-flacher interaktiver Oberflächen und analysiert ihr Potential für die Interaktion während der Fahrt. Dazu wurden für jede Charakteristik verschiedene Prototypen entwickelt und in Testumgebungen entsprechend ihres Reifegrads evaluiert. Auf diese Weise konnten subjektives Nutzerfeedback und objektive Daten erhoben, und die Effekte auf Fahr- und Blickverhalten sowie Nutzbarkeit untersucht werden. Diese Dissertation leistet den Beitrag einer Analyse der Entwicklung von interaktiven Oberflächen im Automobilbereich. Weiterhin werden die Aspekte Größe und Form untersucht, um mit ihrer Hilfe die Interaktion im Vergleich zu herkömmlichen Touchscreens zu verbessern. Die durchgeführten Studien belegen, dass große Flächen neue und verbesserte Bedienmöglichkeiten bieten können. Außerdem zeigt sich ein positiver Effekt auf die visuelle Ablenkung, wenn zusätzliches statisches, haptisches Feedback durch nicht-flache Oberflächen bereitgestellt wird. Zusammenfassend zeigen verschiedene, untereinander kombinierbare Interaktionskonzepte das Potential interaktiver Oberflächen für den automotiven Einsatz. Zudem können die Ergebnisse auch in anderen Bereichen Anwendung finden, in denen visuelle Aufmerksamkeit für andere Aufgaben benötigt wird

    Design and recognition of microgestures for always-available input

    Get PDF
    Gestural user interfaces for computing devices most commonly require the user to have at least one hand free to interact with the device, for example, moving a mouse, touching a screen, or performing mid-air gestures. Consequently, users find it difficult to operate computing devices while holding or manipulating everyday objects. This limits the users from interacting with the digital world during a significant portion of their everyday activities, such as, using tools in the kitchen or workshop, carrying items, or workout with sports equipment. This thesis pushes the boundaries towards the bigger goal of enabling always-available input. Microgestures have been recognized for their potential to facilitate direct and subtle interactions. However, it remains an open question how to interact using gestures with computing devices when both of the user’s hands are occupied holding everyday objects. We take a holistic approach and focus on three core contributions: i) To understand end-users preferences, we present an empirical analysis of users’ choice of microgestures when holding objects of diverse geometries. Instead of designing a gesture set for a specific object or geometry and to identify gestures that generalize, this thesis leverages the taxonomy of grasp types established from prior research. ii) We tackle the critical problem of avoiding false activation by introducing a novel gestural input concept that leverages a single-finger movement, which stands out from everyday finger motions during holding and manipulating objects. Through a data-driven approach, we also systematically validate the concept’s robustness with different everyday actions. iii) While full sensor coverage on the user’s hand would allow detailed hand-object interaction, minimal instrumentation is desirable for real-world use. This thesis addresses the problem of identifying sparse sensor layouts. We present the first rapid computational method, along with a GUI-based design tool that enables iterative design based on the designer’s high-level requirements. Furthermore, we demonstrate that minimal form-factor devices, like smart rings, can be used to effectively detect microgestures in hands-free and busy scenarios. Overall, the presented findings will serve as both conceptual and technical foundations for enabling interaction with computing devices wherever and whenever users need them.Benutzerschnittstellen für Computergeräte auf Basis von Gesten erfordern für eine Interaktion meist mindestens eine freie Hand, z.B. um eine Maus zu bewegen, einen Bildschirm zu berühren oder Gesten in der Luft auszuführen. Daher ist es für Nutzer schwierig, Geräte zu bedienen, während sie Gegenstände halten oder manipulieren. Dies schränkt die Interaktion mit der digitalen Welt während eines Großteils ihrer alltäglichen Aktivitäten ein, etwa wenn sie Küchengeräte oder Werkzeug verwenden, Gegenstände tragen oder mit Sportgeräten trainieren. Diese Arbeit erforscht neue Wege in Richtung des größeren Ziels, immer verfügbare Eingaben zu ermöglichen. Das Potential von Mikrogesten für die Erleichterung von direkten und feinen Interaktionen wurde bereits erkannt. Die Frage, wie der Nutzer mit Geräten interagiert, wenn beide Hände mit dem Halten von Gegenständen belegt sind, bleibt jedoch offen. Wir verfolgen einen ganzheitlichen Ansatz und konzentrieren uns auf drei Kernbeiträge: i) Um die Präferenzen der Endnutzer zu verstehen, präsentieren wir eine empirische Analyse der Wahl von Mikrogesten beim Halten von Objekte mit diversen Geometrien. Anstatt einen Satz an Gesten für ein bestimmtes Objekt oder eine bestimmte Geometrie zu entwerfen, nutzt diese Arbeit die aus früheren Forschungen stammenden Taxonomien an Griff-Typen. ii) Wir adressieren das Problem falscher Aktivierungen durch ein neuartiges Eingabekonzept, das die sich von alltäglichen Fingerbewegungen abhebende Bewegung eines einzelnen Fingers nutzt. Durch einen datengesteuerten Ansatz validieren wir zudem systematisch die Robustheit des Konzepts bei diversen alltäglichen Aktionen. iii) Auch wenn eine vollständige Sensorabdeckung an der Hand des Nutzers eine detaillierte Hand-Objekt-Interaktion ermöglichen würde, ist eine minimale Ausstattung für den Einsatz in der realen Welt wünschenswert. Diese Arbeit befasst sich mit der Identifizierung reduzierter Sensoranordnungen. Wir präsentieren die erste, schnelle Berechnungsmethode in einem GUI-basierten Designtool, das iteratives Design basierend auf den Anforderungen des Designers ermöglicht. Wir zeigen zudem, dass Geräte mit minimalem Formfaktor wie smarte Ringe für die Erkennung von Mikrogesten verwendet werden können. Insgesamt dienen die vorgestellten Ergebnisse sowohl als konzeptionelle als auch als technische Grundlage für die Realisierung von Interaktion mit Computergeräten wo und wann immer Nutzer sie benötigen.Bosch Researc

    Virtual Reality Interfaces for Product Design: Finding User Interface solutions for design creation within Virtual Reality

    Get PDF
    The focus of Virtual Reality has gone from research to widespread adoption in entertainment and practical directions, like automotive design and architectural visualization. With that, we have to take into consideration the best way to give in-experience control to the user and the interaction within the interface. Recent studies explore the ergonomic considerations and zones of content for VR interfaces. But Virtual Reality interaction design has a long way to go and nowadays is done mainly like a projection of 2D screens, with planar interfaces in the 3D space, almost ignoring the immersive potential of the Virtual Reality medium (Alger 2015; Google Developers 2017). Designers that work with 3D objects might find it difficult to make design decisions and validate their concepts based on context and empathy. To help with this, they often prototype, which can take a great deal of time and effort. Virtual reality can be a tool that improves the process and gives the designer an unconstrained and flexible canvas. By reimagining interactions for Virtual Reality, this thesis aims to create interface tools that help designers explore shape and manipulate their designs

    Get a grip: Analysis of muscle activity and perceived comfort in using stylus grips

    Get PDF
    The design of handwriting instruments has been based primarily on touch, feel, aesthetics, and muscle exertion. Previous studies make it clear that different pen characteristics have to be considered along with hand-instrument interaction in the design of writing instruments. This should include pens designed for touch screens and computer based writing surfaces. Hence, this study focuses primarily on evaluating grip style’s impact on user comfort and muscle activity associated with handgrip while using a stylus-pen. Surface EMG measures were taken approximate to the adductor pollicis, flexor digitorum, and extensor indicis of eight participants while they performed writing, drawing, and point-and-click tasks on a tablet using a standard stylus and two grip options. Participants were also timed and surveyed on comfort level for each trial. Results of this study indicate that participants overall felt using a grip was more comfortable than using a stylus alone. The claw grip was the preferred choice for writing and drawing, and the crossover grip was preferred for pointing and clicking. There was reduction in muscle activity of the extensor indicis using the claw or crossover grip for the drawing and point and click tasks. The reduced muscle activity and the perceived comfort shows the claw grip to be a viable option for improving comfort for writing or drawing on a touchscreen device

    Thumb + Pen Interaction on Tablets

    Get PDF
    ABSTRACT Modern tablets support simultaneous pen and touch input, but it remains unclear how to best leverage this capability for bimanual input when the nonpreferred hand holds the tablet. We explore Thumb + Pen interactions that support simultaneous pen and touch interaction, with both hands, in such situations. Our approach engages the thumb of the device-holding hand, such that the thumb interacts with the touch screen in an indirect manner, thereby complementing the direct input provided by the preferred hand. For instance, the thumb can determine how pen actions (articulated with the opposite hand) are interpreted. Alternatively, the pen can point at an object, while the thumb manipulates one or more of its parameters through indirect touch. Our techniques integrate concepts in a novel way that derive from marking menus, spring-loaded modes, indirect input, and multi-touch conventions. Our overall approach takes the form of a set of probes, each representing a meaningfully distinct class of application. They serve as an initial exploration of the design space at a level which will help determine the feasibility of supporting bimanual interaction in such contexts, and the viability of the Thumb + Pen techniques in so doing

    Eignung von virtueller Physik und Touch-Gesten in Touchscreen-Benutzerschnittstellen fĂĽr kritische Aufgaben

    Get PDF
    The goal of this reasearch was to examine if modern touch screen interaction concepts that are established on consumer electronic devices like smartphones can be used in time-critical and safety-critical use cases like for machine control or healthcare appliances. Several prevalent interaction concepts with and without touch gestures and virtual physics were tested experimentally in common use cases to assess their efficiency, error rate and user satisfaction during task completion. Based on the results, design recommendations for list scrolling and horizontal dialog navigation are given.Das Ziel dieser Forschungsarbeit war es zu untersuchen, ob moderne Touchscreen-Interaktionskonzepte, die auf Consumer-Electronic-Geräten wie Smartphones etabliert sind, für zeit- und sicherheitskritische Anwendungsfälle wie Maschinensteuerung und Medizingeräte geeignet sind. Mehrere gebräuchliche Interaktionskonzepte mit und ohne Touch-Gesten und virtueller Physik wurden in häufigen Anwendungsfällen experimentell auf ihre Effizienz, Fehlerrate und Nutzerzufriedenheit bei der Aufgabenlösung untersucht. Basierend auf den Resultaten werden Empfehlungen für das Scrollen in Listen und dem horizontalen Navigieren in mehrseitigen Software-Dialogen ausgesprochen

    A musculoskeletal model of the human hand to improve human-device interaction

    Get PDF
    abstract: Multi-touch tablets and smart phones are now widely used in both workplace and consumer settings. Interacting with these devices requires hand and arm movements that are potentially complex and poorly understood. Experimental studies have revealed differences in performance that could potentially be associated with injury risk. However, underlying causes for performance differences are often difficult to identify. For example, many patterns of muscle activity can potentially result in similar behavioral output. Muscle activity is one factor contributing to forces in tissues that could contribute to injury. However, experimental measurements of muscle activity and force for humans are extremely challenging. Models of the musculoskeletal system can be used to make specific estimates of neuromuscular coordination and musculoskeletal forces. However, existing models cannot easily be used to describe complex, multi-finger gestures such as those used for multi-touch human computer interaction (HCI) tasks. We therefore seek to develop a dynamic musculoskeletal simulation capable of estimating internal musculoskeletal loading during multi-touch tasks involving multi digits of the hand, and use the simulation to better understand complex multi-touch and gestural movements, and potentially guide the design of technologies the reduce injury risk. To accomplish these, we focused on three specific tasks. First, we aimed at determining the optimal index finger muscle attachment points within the context of the established, validated OpenSim arm model using measured moment arm data taken from the literature. Second, we aimed at deriving moment arm values from experimentally-measured muscle attachments and using these values to determine muscle-tendon paths for both extrinsic and intrinsic muscles of middle, ring and little fingers. Finally, we aimed at exploring differences in hand muscle activation patterns during zooming and rotating tasks on the tablet computer in twelve subjects. Towards this end, our musculoskeletal hand model will help better address the neuromuscular coordination, safe gesture performance and internal loadings for multi-touch applications.Dissertation/ThesisDoctoral Dissertation Mechanical Engineering 201

    The cockpit for the 21st century

    Get PDF
    Interactive surfaces are a growing trend in many domains. As one possible manifestation of Mark Weiser’s vision of ubiquitous and disappearing computers in everywhere objects, we see touchsensitive screens in many kinds of devices, such as smartphones, tablet computers and interactive tabletops. More advanced concepts of these have been an active research topic for many years. This has also influenced automotive cockpit development: concept cars and recent market releases show integrated touchscreens, growing in size. To meet the increasing information and interaction needs, interactive surfaces offer context-dependent functionality in combination with a direct input paradigm. However, interfaces in the car need to be operable while driving. Distraction, especially visual distraction from the driving task, can lead to critical situations if the sum of attentional demand emerging from both primary and secondary task overextends the available resources. So far, a touchscreen requires a lot of visual attention since its flat surface does not provide any haptic feedback. There have been approaches to make direct touch interaction accessible while driving for simple tasks. Outside the automotive domain, for example in office environments, concepts for sophisticated handling of large displays have already been introduced. Moreover, technological advances lead to new characteristics for interactive surfaces by enabling arbitrary surface shapes. In cars, two main characteristics for upcoming interactive surfaces are largeness and shape. On the one hand, spatial extension is not only increasing through larger displays, but also by taking objects in the surrounding into account for interaction. On the other hand, the flatness inherent in current screens can be overcome by upcoming technologies, and interactive surfaces can therefore provide haptically distinguishable surfaces. This thesis describes the systematic exploration of large and shaped interactive surfaces and analyzes their potential for interaction while driving. Therefore, different prototypes for each characteristic have been developed and evaluated in test settings suitable for their maturity level. Those prototypes were used to obtain subjective user feedback and objective data, to investigate effects on driving and glance behavior as well as usability and user experience. As a contribution, this thesis provides an analysis of the development of interactive surfaces in the car. Two characteristics, largeness and shape, are identified that can improve the interaction compared to conventional touchscreens. The presented studies show that large interactive surfaces can provide new and improved ways of interaction both in driver-only and driver-passenger situations. Furthermore, studies indicate a positive effect on visual distraction when additional static haptic feedback is provided by shaped interactive surfaces. Overall, various, non-exclusively applicable, interaction concepts prove the potential of interactive surfaces for the use in automotive cockpits, which is expected to be beneficial also in further environments where visual attention needs to be focused on additional tasks.Der Einsatz von interaktiven Oberflächen weitet sich mehr und mehr auf die unterschiedlichsten Lebensbereiche aus. Damit sind sie eine mögliche Ausprägung von Mark Weisers Vision der allgegenwärtigen Computer, die aus unserer direkten Wahrnehmung verschwinden. Bei einer Vielzahl von technischen Geräten des täglichen Lebens, wie Smartphones, Tablets oder interaktiven Tischen, sind berührungsempfindliche Oberflächen bereits heute in Benutzung. Schon seit vielen Jahren arbeiten Forscher an einer Weiterentwicklung der Technik, um ihre Vorteile auch in anderen Bereichen, wie beispielsweise der Interaktion zwischen Mensch und Automobil, nutzbar zu machen. Und das mit Erfolg: Interaktive Benutzeroberflächen werden mittlerweile serienmäßig in vielen Fahrzeugen eingesetzt. Der Einbau von immer größeren, in das Cockpit integrierten Touchscreens in Konzeptfahrzeuge zeigt, dass sich diese Entwicklung weiter in vollem Gange befindet. Interaktive Oberflächen ermöglichen das flexible Anzeigen von kontextsensitiven Inhalten und machen eine direkte Interaktion mit den Bildschirminhalten möglich. Auf diese Weise erfüllen sie die sich wandelnden Informations- und Interaktionsbedürfnisse in besonderem Maße. Beim Einsatz von Bedienschnittstellen im Fahrzeug ist die gefahrlose Benutzbarkeit während der Fahrt von besonderer Bedeutung. Insbesondere visuelle Ablenkung von der Fahraufgabe kann zu kritischen Situationen führen, wenn Primär- und Sekundäraufgaben mehr als die insgesamt verfügbare Aufmerksamkeit des Fahrers beanspruchen. Herkömmliche Touchscreens stellen dem Fahrer bisher lediglich eine flache Oberfläche bereit, die keinerlei haptische Rückmeldung bietet, weshalb deren Bedienung besonders viel visuelle Aufmerksamkeit erfordert. Verschiedene Ansätze ermöglichen dem Fahrer, direkte Touchinteraktion für einfache Aufgaben während der Fahrt zu nutzen. Außerhalb der Automobilindustrie, zum Beispiel für Büroarbeitsplätze, wurden bereits verschiedene Konzepte für eine komplexere Bedienung großer Bildschirme vorgestellt. Darüber hinaus führt der technologische Fortschritt zu neuen möglichen Ausprägungen interaktiver Oberflächen und erlaubt, diese beliebig zu formen. Für die nächste Generation von interaktiven Oberflächen im Fahrzeug wird vor allem an der Modifikation der Kategorien Größe und Form gearbeitet. Die Bedienschnittstelle wird nicht nur durch größere Bildschirme erweitert, sondern auch dadurch, dass Objekte wie Dekorleisten in die Interaktion einbezogen werden können. Andererseits heben aktuelle Technologieentwicklungen die Restriktion auf flache Oberflächen auf, so dass Touchscreens künftig ertastbare Strukturen aufweisen können. Diese Dissertation beschreibt die systematische Untersuchung großer und nicht-flacher interaktiver Oberflächen und analysiert ihr Potential für die Interaktion während der Fahrt. Dazu wurden für jede Charakteristik verschiedene Prototypen entwickelt und in Testumgebungen entsprechend ihres Reifegrads evaluiert. Auf diese Weise konnten subjektives Nutzerfeedback und objektive Daten erhoben, und die Effekte auf Fahr- und Blickverhalten sowie Nutzbarkeit untersucht werden. Diese Dissertation leistet den Beitrag einer Analyse der Entwicklung von interaktiven Oberflächen im Automobilbereich. Weiterhin werden die Aspekte Größe und Form untersucht, um mit ihrer Hilfe die Interaktion im Vergleich zu herkömmlichen Touchscreens zu verbessern. Die durchgeführten Studien belegen, dass große Flächen neue und verbesserte Bedienmöglichkeiten bieten können. Außerdem zeigt sich ein positiver Effekt auf die visuelle Ablenkung, wenn zusätzliches statisches, haptisches Feedback durch nicht-flache Oberflächen bereitgestellt wird. Zusammenfassend zeigen verschiedene, untereinander kombinierbare Interaktionskonzepte das Potential interaktiver Oberflächen für den automotiven Einsatz. Zudem können die Ergebnisse auch in anderen Bereichen Anwendung finden, in denen visuelle Aufmerksamkeit für andere Aufgaben benötigt wird

    Text Materialities, Affordances, and the Embodied Turn in the Study of Reading.

    Get PDF
    Digital texts have for decades been a challenge for reading research, creating a range of questions about reading and a need for new theories and concepts. In this paper, we focus on materialities of texts and suggest an embodied, enacted, and extended approach to the research on digital reading. We refer to findings showing that cognitive activities in reading are grounded in bodily and social experiences, and we explore the cognitive role of the body in reading, claiming that–influenced by tacit knowledge and the task at hand–textual meaning is enacted through a mental and physical engagement with text. Further, applying the concept of affordances, we examine how digital technologies have induced new ways of physically handling and mentally interpreting text, indicating that brain, body, text, and technologies are integrated parts of an extended process of reading. The aim of the paper is to encourage empirical research on the interplay between body (including brain), text, and text materialities, a focus we argue will deepen our understand of the current transformation of reading.publishedVersio
    • …
    corecore