171 research outputs found

    Annual Research Report 2020

    Get PDF

    Non-intrusive and structure preserving multiscale integration of stiff ODEs, SDEs and Hamiltonian systems with hidden slow dynamics via flow averaging

    Get PDF
    We introduce a new class of integrators for stiff ODEs as well as SDEs. These integrators are (i) {\it Multiscale}: they are based on flow averaging and so do not fully resolve the fast variables and have a computational cost determined by slow variables (ii) {\it Versatile}: the method is based on averaging the flows of the given dynamical system (which may have hidden slow and fast processes) instead of averaging the instantaneous drift of assumed separated slow and fast processes. This bypasses the need for identifying explicitly (or numerically) the slow or fast variables (iii) {\it Nonintrusive}: A pre-existing numerical scheme resolving the microscopic time scale can be used as a black box and easily turned into one of the integrators in this paper by turning the large coefficients on over a microscopic timescale and off during a mesoscopic timescale (iv) {\it Convergent over two scales}: strongly over slow processes and in the sense of measures over fast ones. We introduce the related notion of two-scale flow convergence and analyze the convergence of these integrators under the induced topology (v) {\it Structure preserving}: for stiff Hamiltonian systems (possibly on manifolds), they can be made to be symplectic, time-reversible, and symmetry preserving (symmetries are group actions that leave the system invariant) in all variables. They are explicit and applicable to arbitrary stiff potentials (that need not be quadratic). Their application to the Fermi-Pasta-Ulam problems shows accuracy and stability over four orders of magnitude of time scales. For stiff Langevin equations, they are symmetry preserving, time-reversible and Boltzmann-Gibbs reversible, quasi-symplectic on all variables and conformally symplectic with isotropic friction.Comment: 69 pages, 21 figure

    Annual Research Report 2021

    Get PDF

    Dirichlet Form Theory and its Applications

    Get PDF
    Theory of Dirichlet forms is one of the main achievements in modern probability theory. It provides a powerful connection between probabilistic and analytic potential theory. It is also an effective machinery for studying various stochastic models, especially those with non-smooth data, on fractal-like spaces or spaces of infinite dimensions. The Dirichlet form theory has numerous interactions with other areas of mathematics and sciences. This workshop brought together top experts in Dirichlet form theory and related fields as well as promising young researchers, with the common theme of developing new foundational methods and their applications to specific areas of probability. It provided a unique opportunity for the interaction between the established scholars and young researchers

    Markov Decision Processes with Risk-Sensitive Criteria: An Overview

    Full text link
    The paper provides an overview of the theory and applications of risk-sensitive Markov decision processes. The term 'risk-sensitive' refers here to the use of the Optimized Certainty Equivalent as a means to measure expectation and risk. This comprises the well-known entropic risk measure and Conditional Value-at-Risk. We restrict our considerations to stationary problems with an infinite time horizon. Conditions are given under which optimal policies exist and solution procedures are explained. We present both the theory when the Optimized Certainty Equivalent is applied recursively as well as the case where it is applied to the cumulated reward. Discounted as well as non-discounted models are reviewe
    • ā€¦
    corecore